Show simple item record

dc.contributor.authorBrox, Jose
dc.contributor.authorGarcía, Esther
dc.contributor.authorGómez Lozano, Miguel
dc.contributor.authorMuñoz Alcázar, Rubén
dc.contributor.authorVera de Salas, Guillermo
dc.date.accessioned2025-12-11T03:58:11Z
dc.date.available2025-12-11T03:58:11Z
dc.date.issued2021
dc.identifier.citationBulletin of the Malaysian Mathematical Sciences Society, 2022, 45, 631-646es
dc.identifier.issn0126-6705es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80485
dc.description.abstractIn this paper we study ad-nilpotent elements of semiprime rings $R$ with involution $*$ whose indices of ad-nilpotence differ on $\Skew(R,*)$ and $R$. The existence of such an ad-nilpotent element $a$ implies the existence of a GPI of $R$, and determines a big part of its structure. When moving to the symmetric Martindale ring of quotients $Q_m^s(R)$ of $R$, $a$ remains ad-nilpotent of the original indices in $\Skew(Q_m^s(R),*)$ and $Q_m^s(R)$. There exists an idempotent $e\in Q_m^s(R)$ that orthogonally decomposes $a=ea+(1-e)a$ and either both $ea$ and $(1-e)a$ are ad-nilpotent of the same index (in this case the index of ad-nilpotence of $a$ in $\Skew(Q_m^s(R),*)$ is congruent with 0 modulo 4), or $ea$ and $(1-e)a$ have different indices of ad-nilpotence (in this case the index of ad-nilpotence of $a$ in $\Skew(Q_m^s(R),*)$ is congruent with 3 modulo 4). Furthermore we show that $Q_m^s(R)$ has a finite $\mathbb{Z}$-grading induced by a $*$-complete family of orthogonal idempotents and that $eQ_m^s(R)e$, which contains $ea$, is isomorphic to a ring of matrices over its extended centroid. All this information is used to produce examples of these types of ad-nilpotent elements for any possible index of ad-nilpotence $n$.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherSpringer Naturees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleAd-Nilpotent Elements of Skew Index in Semiprime Rings with Involutiones
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/s40840-021-01206-8es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s40840-021-01206-8es
dc.identifier.publicationfirstpage631es
dc.identifier.publicationissue2es
dc.identifier.publicationlastpage646es
dc.identifier.publicationtitleBulletin of the Malaysian Mathematical Sciences Societyes
dc.identifier.publicationvolume45es
dc.peerreviewedSIes
dc.description.projectThis work was partially supported by the Centre for Mathematics of the University of Coimbra - UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES. The first author was supported by the Portuguese Government through grant SFRH/BPD/118665/2016 (FCT/Centro 2020/Portugal 2020/ESF).es
dc.identifier.essn2180-4206es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record