| dc.contributor.author | Brox, Jose | |
| dc.contributor.author | García, Esther | |
| dc.contributor.author | Gómez Lozano, Miguel | |
| dc.contributor.author | Muñoz Alcázar, Rubén | |
| dc.contributor.author | Vera de Salas, Guillermo | |
| dc.date.accessioned | 2025-12-11T03:58:11Z | |
| dc.date.available | 2025-12-11T03:58:11Z | |
| dc.date.issued | 2021 | |
| dc.identifier.citation | Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45, 631-646 | es |
| dc.identifier.issn | 0126-6705 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/80485 | |
| dc.description.abstract | In this paper we study ad-nilpotent elements of semiprime rings $R$ with involution $*$ whose indices of ad-nilpotence differ on $\Skew(R,*)$ and $R$. The existence of such an ad-nilpotent element $a$ implies the existence of a GPI of $R$, and determines a big part of its structure. When moving to the symmetric Martindale ring of quotients $Q_m^s(R)$ of $R$,
$a$ remains ad-nilpotent of the original indices in $\Skew(Q_m^s(R),*)$ and $Q_m^s(R)$. There exists an idempotent $e\in Q_m^s(R)$ that orthogonally decomposes $a=ea+(1-e)a$ and either both $ea$ and $(1-e)a$ are ad-nilpotent of the same index (in this case the index of ad-nilpotence of $a$ in $\Skew(Q_m^s(R),*)$ is congruent with 0 modulo 4), or $ea$ and $(1-e)a$ have different indices of ad-nilpotence (in this case the index of ad-nilpotence of $a$ in $\Skew(Q_m^s(R),*)$ is congruent with 3 modulo 4). Furthermore we show that $Q_m^s(R)$ has a finite $\mathbb{Z}$-grading induced by a $*$-complete family of orthogonal idempotents and that $eQ_m^s(R)e$, which contains $ea$, is isomorphic to a ring of matrices over its extended centroid. All this information is used to produce examples of these types of ad-nilpotent elements for any possible index of ad-nilpotence $n$. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | spa | es |
| dc.publisher | Springer Nature | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.title | Ad-Nilpotent Elements of Skew Index in Semiprime Rings with Involution | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.identifier.doi | 10.1007/s40840-021-01206-8 | es |
| dc.relation.publisherversion | https://link.springer.com/article/10.1007/s40840-021-01206-8 | es |
| dc.identifier.publicationfirstpage | 631 | es |
| dc.identifier.publicationissue | 2 | es |
| dc.identifier.publicationlastpage | 646 | es |
| dc.identifier.publicationtitle | Bulletin of the Malaysian Mathematical Sciences Society | es |
| dc.identifier.publicationvolume | 45 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | This work was partially supported by the Centre for Mathematics of the University of Coimbra - UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES. The first author was supported by the Portuguese Government through grant SFRH/BPD/118665/2016 (FCT/Centro 2020/Portugal 2020/ESF). | es |
| dc.identifier.essn | 2180-4206 | es |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |