• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80485

    Título
    Ad-Nilpotent Elements of Skew Index in Semiprime Rings with Involution
    Autor
    Brox, Jose
    García, Esther
    Gómez Lozano, Miguel
    Muñoz Alcázar, Rubén
    Vera de Salas, Guillermo
    Año del Documento
    2021
    Editorial
    Springer Nature
    Documento Fuente
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45, 631-646
    Resumen
    In this paper we study ad-nilpotent elements of semiprime rings $R$ with involution $*$ whose indices of ad-nilpotence differ on $\Skew(R,*)$ and $R$. The existence of such an ad-nilpotent element $a$ implies the existence of a GPI of $R$, and determines a big part of its structure. When moving to the symmetric Martindale ring of quotients $Q_m^s(R)$ of $R$, $a$ remains ad-nilpotent of the original indices in $\Skew(Q_m^s(R),*)$ and $Q_m^s(R)$. There exists an idempotent $e\in Q_m^s(R)$ that orthogonally decomposes $a=ea+(1-e)a$ and either both $ea$ and $(1-e)a$ are ad-nilpotent of the same index (in this case the index of ad-nilpotence of $a$ in $\Skew(Q_m^s(R),*)$ is congruent with 0 modulo 4), or $ea$ and $(1-e)a$ have different indices of ad-nilpotence (in this case the index of ad-nilpotence of $a$ in $\Skew(Q_m^s(R),*)$ is congruent with 3 modulo 4). Furthermore we show that $Q_m^s(R)$ has a finite $\mathbb{Z}$-grading induced by a $*$-complete family of orthogonal idempotents and that $eQ_m^s(R)e$, which contains $ea$, is isomorphic to a ring of matrices over its extended centroid. All this information is used to produce examples of these types of ad-nilpotent elements for any possible index of ad-nilpotence $n$.
    ISSN
    0126-6705
    Revisión por pares
    SI
    DOI
    10.1007/s40840-021-01206-8
    Patrocinador
    This work was partially supported by the Centre for Mathematics of the University of Coimbra - UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES. The first author was supported by the Portuguese Government through grant SFRH/BPD/118665/2016 (FCT/Centro 2020/Portugal 2020/ESF).
    Version del Editor
    https://link.springer.com/article/10.1007/s40840-021-01206-8
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80485
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP96 - Artículos de revista [104]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Ad-nilpotent elements of skew index in semiprime rings with involution (2022, BMMSS) - Brox, García, Gómez, Muñoz, Vera.pdf
    Tamaño:
    351.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10