Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80585
Título
University Students’ Engagement with Artificial Intelligence: A Cluster Analysis of Learner Profiles in AI Literacy
Año del Documento
2025
Editorial
Springer Nature
Descripción
Producción Científica
Documento Fuente
Technology, Knowledge and Learning
Resumen
The rapid integration of artificial intelligence (AI) technologies in higher education has created new opportunities and challenges for student learning. This study examines how university students engage with AI in their learning processes by identifying distinct learner profiles based on their AI literacy, experiences, actions, and perceptions of faculty modeling. Using cluster analysis on a sample of 353 undergraduate students from a private university in Mexico, we identified three distinct profiles through principal component analysis and K-means clustering: “Critically Engaged Navigators” (32%), “Pragmatic Technicians” (37%), and “Emerging Users” (32%). The analysis reveals significant differences in learning exposure, social learning patterns, autonomous learning strategies, responsible AI use, and perceptions of faculty modeling across clusters. These findings have important implications for differentiated pedagogical design, faculty development programs, and the development of adaptive educational technologies that can support diverse learner needs in AI-enhanced educational environments. The study contributes to the growing literature on AI literacy while providing practical insights for educators seeking to optimize AI integration in higher education contexts.
Materias (normalizadas)
Inteligencia artificial
Alfabetización en IA
Estudiantes universitarios
Análisis de conglomerados
Perfiles de los alumnos
Modelización del profesorado
Materias Unesco
58 Pedagogía
1203.04 Inteligencia Artificial
ISSN
2211-1662
Revisión por pares
SI
Patrocinador
Open access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
Version del Editor
Propietario de los Derechos
© 2025 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
Tamaño:
1.416Mb
Formato:
Adobe PDF
La licencia del ítem se describe como Atribución 4.0 Internacional










