• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Pedagogía
    • DEP54 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Pedagogía
    • DEP54 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80585

    Título
    University Students’ Engagement with Artificial Intelligence: A Cluster Analysis of Learner Profiles in AI Literacy
    Autor
    Medina Gual, Luis
    Parejo Llanos, José LuisAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Springer Nature
    Descripción
    Producción Científica
    Documento Fuente
    Technology, Knowledge and Learning
    Resumen
    The rapid integration of artificial intelligence (AI) technologies in higher education has created new opportunities and challenges for student learning. This study examines how university students engage with AI in their learning processes by identifying distinct learner profiles based on their AI literacy, experiences, actions, and perceptions of faculty modeling. Using cluster analysis on a sample of 353 undergraduate students from a private university in Mexico, we identified three distinct profiles through principal component analysis and K-means clustering: “Critically Engaged Navigators” (32%), “Pragmatic Technicians” (37%), and “Emerging Users” (32%). The analysis reveals significant differences in learning exposure, social learning patterns, autonomous learning strategies, responsible AI use, and perceptions of faculty modeling across clusters. These findings have important implications for differentiated pedagogical design, faculty development programs, and the development of adaptive educational technologies that can support diverse learner needs in AI-enhanced educational environments. The study contributes to the growing literature on AI literacy while providing practical insights for educators seeking to optimize AI integration in higher education contexts.
    Materias (normalizadas)
    Inteligencia artificial
    Alfabetización en IA
    Estudiantes universitarios
    Análisis de conglomerados
    Perfiles de los alumnos
    Modelización del profesorado
    Materias Unesco
    58 Pedagogía
    1203.04 Inteligencia Artificial
    ISSN
    2211-1662
    Revisión por pares
    SI
    DOI
    10.1007/s10758-025-09926-7
    Patrocinador
    Open access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
    Version del Editor
    https://link.springer.com/article/10.1007/s10758-025-09926-7
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80585
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP54 - Artículos de revista [160]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    University-Students-Engagement-with-Artificial-Intelligence.pdf
    Tamaño:
    1.416Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10