Mostrar el registro sencillo del ítem

dc.contributor.authorVelázquez Palencia, Iván 
dc.contributor.authorCantero Sposetti, Danilo Alberto 
dc.contributor.authorDemeyer, Frederiek
dc.contributor.authorReyes Serrano, Miriam 
dc.date.accessioned2025-12-17T08:28:29Z
dc.date.available2025-12-17T08:28:29Z
dc.date.issued2026
dc.identifier.citationApplied Thermal Engineering, 2026, vol. 285, p. 129206es
dc.identifier.issn1359-4311es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80694
dc.descriptionProducción Científicaes
dc.description.abstractMicrotube heat exchangers represent a high-performance alternative to conventional printed circuit designs for the thermal recuperator of the innovative oxy-combustion NET Power cycle, offering potential improvements in both system efficiency and compactness. To support this technology transition, this study presents an experi- mental investigation of heat transfer in CO2 at supercritical pressures up to 30 MPa. Experiments were conducted using a 1700 mm long, 0.88 mm inner diameter, uniformly heated horizontal microtube designed to replicate the operating conditions of a microtube heat exchanger. An experimental setup was built to measure local heat transfer coefficients of CO2, with a parametric analysis performed to evaluate the influence of mass flux, heat flux, inlet temperature, buoyancy, and flow acceleration. Tests were conducted at pressures of 10, 15, 20, 25 and 30 MPa. Results show that the heat transfer improves with increasing mass flux. At 10 MPa, the heat transfer coefficient exhibits a peak near the pseudo-critical temperature, followed by a deterioration and subsequent recovery. With increasing thermal input, the peak is attenuated, while heat transfer performance improves at higher pressures. Raising inlet temperatures enhances heat transfer in the thermal inflow region, reduces the peak value at 10 MPa, and causes the heat transfer coefficients to converge across different pressures. Buoyancy effects are most pronounced at 10 MPa and become weaker as pressure increases. Moreover, a new deep neural network model was developed to predict heat transfer coefficients, demonstrating an average deviation of 6.34 %. The present study substantially expands the existing experimental database, provides new physical in- terpretations of key phenomena, and translates these findings into a predictive tool applicable to engineering designes
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationNET power cyclees
dc.subject.classificationOxy-combustiones
dc.subject.classificationCompact heat exchangerses
dc.subject.classificationNeural networkes
dc.subject.classificationHeat transferes
dc.subject.classificationSupercritical carbon dioxidees
dc.subject.classificationMicrotube heat exchangeres
dc.titleExperimental investigation on heat transfer to supercritical CO2 in a microtube up to 30 MPa for application in the NET Power cyclees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.applthermaleng.2025.129206es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1359431125037986es
dc.identifier.publicationfirstpage129206es
dc.identifier.publicationtitleApplied Thermal Engineeringes
dc.identifier.publicationvolume285es
dc.peerreviewedSIes
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem