• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Energética y Fluidomecánica
    • DEP46 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Energética y Fluidomecánica
    • DEP46 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80694

    Título
    Experimental investigation on heat transfer to supercritical CO2 in a microtube up to 30 MPa for application in the NET Power cycle
    Autor
    Velázquez Palencia, IvánAutoridad UVA
    Cantero Sposetti, Danilo AlbertoAutoridad UVA Orcid
    Demeyer, Frederiek
    Reyes Serrano, MiriamAutoridad UVA Orcid
    Año del Documento
    2026
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Applied Thermal Engineering, 2026, vol. 285, p. 129206
    Zusammenfassung
    Microtube heat exchangers represent a high-performance alternative to conventional printed circuit designs for the thermal recuperator of the innovative oxy-combustion NET Power cycle, offering potential improvements in both system efficiency and compactness. To support this technology transition, this study presents an experi- mental investigation of heat transfer in CO2 at supercritical pressures up to 30 MPa. Experiments were conducted using a 1700 mm long, 0.88 mm inner diameter, uniformly heated horizontal microtube designed to replicate the operating conditions of a microtube heat exchanger. An experimental setup was built to measure local heat transfer coefficients of CO2, with a parametric analysis performed to evaluate the influence of mass flux, heat flux, inlet temperature, buoyancy, and flow acceleration. Tests were conducted at pressures of 10, 15, 20, 25 and 30 MPa. Results show that the heat transfer improves with increasing mass flux. At 10 MPa, the heat transfer coefficient exhibits a peak near the pseudo-critical temperature, followed by a deterioration and subsequent recovery. With increasing thermal input, the peak is attenuated, while heat transfer performance improves at higher pressures. Raising inlet temperatures enhances heat transfer in the thermal inflow region, reduces the peak value at 10 MPa, and causes the heat transfer coefficients to converge across different pressures. Buoyancy effects are most pronounced at 10 MPa and become weaker as pressure increases. Moreover, a new deep neural network model was developed to predict heat transfer coefficients, demonstrating an average deviation of 6.34 %. The present study substantially expands the existing experimental database, provides new physical in- terpretations of key phenomena, and translates these findings into a predictive tool applicable to engineering design
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    NET power cycle
    Oxy-combustion
    Compact heat exchangers
    Neural network
    Heat transfer
    Supercritical carbon dioxide
    Microtube heat exchanger
    ISSN
    1359-4311
    Revisión por pares
    SI
    DOI
    10.1016/j.applthermaleng.2025.129206
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1359431125037986
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80694
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP46 - Artículos de revista [111]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Experimental-investigation-heat-transfer.pdf
    Tamaño:
    4.462Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Atribución 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10