• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80878

    Título
    Catalytic activity of Co–Ag nanoalloys to dissociate molecular hydrogen. New insights on the chemical environment
    Autor
    Ortega, Guillermo
    Germán, EstefaníaAutoridad UVA
    López, María J.
    Alonso, Julio A.
    Año del Documento
    2022
    Editorial
    Elsevier
    Documento Fuente
    International Journal of Hydrogen Energy 47 (2022) 19038 - 19050
    Resumo
    Adsorption of molecular hydrogen on the surface of catalytic metal nanoparticles and its dissociation in atomic hydrogen are processes of interest in many chemical technologies. As in other chemical reactions, alloying can improve the efficiency of the catalysts. By focusing on Co6, Co5Ag, Co3Ag3 and CoAg5, we explore the effect of changing the relative concentration of the two components in small ComAgn clusters, a peculiar nanoalloy because Co and Ag do not form bulk solid alloys. Molecular hydrogen adsorbs preferentially on the Co atoms, and the binding is mainly due to the electrical polarization of the charges of adsorbate and host. The preference for Co sites and the trend in the strength of the H2-cluster binding are explained by the combination of two effects characterizing the host environment. One of these is geometric, arising from the degree of exposure of the host atom: the lower the atomic coordination of the host atom, the stronger its bonding with H2. The second effect, newly identified, reveals the importance of the chemical nature of the host atom environment: host Co atoms having both Co and Ag neighbors maintain their capacity to bind hydrogen more intact than those with only Co neighbors. The alloy nanoclusters catalyze the dissociation of adsorbed H2 by building up quite small activation barriers. After dissociation, the H atoms occupy bridge positions between Co atoms (between Co and Ag in CoAg5). H2 adsorption and dissociation may trigger structural transformations of the cluster. The work shows that the adsorption and dissociation properties of H2 can be tuned by varying the relative composition of the two atomic species in the nanoalloy.
    ISSN
    0360-3199
    Revisión por pares
    SI
    DOI
    10.1016/j.ijhydene.2022.04.090
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80878
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP33 - Artículos de revista [238]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    1-s2.0-S0360319922016044-main-3.pdf
    Tamaño:
    2.070Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10