• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/81304

    Título
    Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations
    Autor
    Bona, Jerry
    Durán, Ángel
    Mitsotakis, Dimitrios
    Año del Documento
    2021
    Documento Fuente
    Discrete and Continuous Dynamical Systems- Series A, 2021, 41-1, p.87-111
    Resumen
    Considered here are systems of partial di erential equations arising in internal wave theory. The systems are asymptotic models describing the two- way propagation of long-crested interfacial waves in the Benjamin-Ono and the Intermediate Long-Wave regimes. Of particular interest will be solitary-wave solutions of these systems. Several methods of numerically approximating these solitary waves are put forward and their performance compared. The output of these schemes is then used to better understand some of the fundamental properties of these solitary waves. The spatial structure of the systems of equations is non-local, like that of their one-dimensional, unidirectional relatives, the Benjamin-Ono and the Intermediate Long-Wave equations. As the non-local aspect is comprised of Fourier multiplier operators, this suggests the use of spectral methods for the discretization in space. Three iterative methods are proposed and implemented for approximating traveling-wave solutions. In addition to Newton-type and Petviashvili iterations, an interesting wrinkle on the usual Petviashvili method is put forward which appears to o er advantages over the other two techniques. The performance of these methods is checked in several ways, including using the approximations they generate as initial data in time-dependent codes for obtaining solutions of the Cauchy problem. Attention is then turned to determining speed versus amplitude relations of these families of waves and their dependence upon parameters in the models. There are also provided comparisons between the unidirectional and bidirec- tional solitary waves. It deserves remark that while small-amplitude solitary- wave solutions of these systems are known to exist, our results suggest the amplitude restriction in the theory is arti cial.
    ISSN
    1553-5231
    Revisión por pares
    SI
    DOI
    10.3934/dcds.2020215
    Patrocinador
    Este trabajo forma parte de los proyectos de investigación: MEC-FEDER Grant MTM2014-54710-P y TEC2015-69665-R y la Junta de Castilla y León Regional Grant VA041P17
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/81304
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [155]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    1078-0947_2021_1_87.pdf
    Tamaño:
    573.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10