• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/81356

    Título
    SleepECG-Net: Explainable Deep Learning Approach With ECG for Pediatric Sleep Apnea Diagnosis
    Autor
    García-Vicente, Clara
    Gutiérrez-Tobal, Gonzalo C.
    Vaquerizo-Villar, Fernando
    Martín-Montero, Adrián
    Gozal, David
    Hornero, Roberto
    Año del Documento
    2025-02-01
    Editorial
    IEEE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INC
    Descripción
    Producción Científica
    Documento Fuente
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, Febrero 2025, vol. 29, n. 2, p. 1021-1034
    Abstract
    Obstructive sleep apnea (OSA) in children is a prevalent and serious respiratory condition linked to cardiovascular morbidity. Polysomnography, the standard diagnostic approach, faces challenges in accessibility and complexity, leading to underdiagnosis. To simplify OSA diagnosis, deep learning (DL) algorithms have been developed using cardiac signals, but they often lack interpretability. Our study introduces a novel interpretable DL approach (SleepECG-Net) for directly estimating OSA severity in at-risk children. A combination of convolutional and recurrent neural networks (CNN-RNN) was trained on overnight electrocardiogram (ECG) signals. Gradient-weighted Class Activation Mapping (Grad-CAM), an eXplainable Artificial Intelligence (XAI) algorithm, was applied to explain model decisions and extract ECG patterns relevant to pediatric OSA. Accordingly, ECG signals from the semi-public Childhood Adenotonsillectomy Trial (CHAT, n=1610) and Cleveland Family Study (CFS, n=64), and the private University of Chicago (UofC, n=981) databases were used. OSA diagnostic performance reached 4-class Cohen's Kappa of 0.410, 0.335, and 0.249 in CHAT, UofC, and CFS, respectively. The proposal demonstrated improved performance with increased severity along with heightened cardiovascular risk. XAI findings highlighted the detection of established ECG features linked to OSA, such as bradycardia-tachycardia events and delayed ECG patterns during apnea/hypopnea occurrences, focusing on clusters of events. Furthermore, Grad-CAM heatmaps identified potential ECG patterns indicating cardiovascular risk, such as P, T, and U waves, QT intervals, and QRS complex variations. Hence, SleepECG-Net approach may improve pediatric OSA diagnosis by also offering cardiac risk factor information, thereby increasing clinician confidence in automated systems, and promoting their effective adoption in clinical practice.
    Materias Unesco
    3325 Tecnología de las Telecomunicaciones
    1203.04 Inteligencia Artificial
    3314 Tecnología Médica
    ISSN
    2168-2194
    Revisión por pares
    SI
    DOI
    10.1109/JBHI.2024.3495975
    Patrocinador
    This work is part of the projects PID2020-115468RB-I00 and CPP2022-009735, funded by MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR. This research was also co-funded by the European Union through the Interreg VI-A Spain-Portugal Program (POCTEP) 2021-2027 (0043_NET4SLEEP_2_E), and by “CIBER-Consorcio Centro de Investigación Biomédica en Red” (CB19/01/00012) through “Instituto de Salud Carlos III”, co-funded with European Regional Development Fund, as well as under the project TinyHeart from 2022 Early Stage call. C. García-Vicente was supported by ‘Ayudas para contratos predoctorales para la Formación de Doctores’ grant from the ‘Ministerio de Ciencia, Innovación y Universidades’ (PRE2021-100792). GC. Gutiérrez-Tobal was supported by a post-doctoral grant from the University of Valladolid. F. Vaquerizo-Villar was supported by a “Sara Borrell” grant (CD23/00031) from the ISCIII cofounded by the ‘Fondo Social Europeo Plus (FSE+)’. D. Gozal is supported in part by NIH grants HL166617 and AG061824.
    Version del Editor
    https://ieeexplore.ieee.org/document/10750335
    Propietario de los Derechos
    © 2024 IEEE
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/81356
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Collections
    • GIB - Artículos de revista [57]
    Show full item record
    Files in this item
    Nombre:
    Manuscript_final.pdf
    Tamaño:
    2.248Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10