• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/81359

    Título
    Combined explainable deep learning model to predict pediatric sleep apnea from ECG and SpO2
    Autor
    García-Vicente, Clara
    Gutiérrez-Tobal, Gonzalo C.
    Vaquerizo-Villar, Fernando
    Martín-Montero, Adrián
    Gozal, David
    Hornero, Roberto
    Año del Documento
    2026-03
    Editorial
    Elsevier
    Documento Fuente
    Measurement, Marzo 2026, vol. 264, n. 10, p. 120259
    Resumen
    Combining deep learning (DL) with eXplainable Artificial Intelligence (XAI) techniques has led to clinically applicable models that simplify the diagnosis of pediatric obstructive sleep apnea (OSA) using a restricted number of cardiorespiratory signals. However, no prior study has applied these techniques to concurrently analyze electrocardiogram (ECG) and oxygen saturation (SpO2) data. Here, we present an explainable DL approach integrating convolutional neural networks with overnight SpO2 and ECG signals to identify pediatric OSA. SHapley Additive exPlanations (SHAP) XAI technique was used to extract relevant patterns linked to pediatric OSA and explain the model decisions. Patients (n = 3,320) from the semi-public Childhood Adenotonsillectomy Trial (CHAT) and Pediatric Adenotonsillectomy Trial for Snoring (PATS), and the private University of Chicago (UofC) databases were analyzed. Performance obtained Cohen’s 4-class kappa of 0.549, 0.457, and 0.378 in CHAT, PATS, and UofC, respectively. Shapley values increased with OSA severity and highlighted the complementarity of SpO2 and ECG, with SpO2 being more relevant in moderate and severe cases and ECG in mild or no OSA cases. SHAP visualizations identified SpO2 desaturations linked to clusters of apneic events and those occurring independently. It also highlighted bradycardia-tachycardia and ECG cardiovascular risk patterns, including variations in P and T waves, PQ and QT intervals, and the QRS complex. Shapley values identified correlations between respiratory and cardiac patterns, showing that desaturations in OSA are linked to cardiac changes. Therefore, our interpretable DL approach may improve pediatric OSA diagnosis by integrating breathing information and accompanying cardiac changes, supporting its effective adoption in clinical settings
    Materias Unesco
    3325 Tecnología de las Telecomunicaciones
    1203.04 Inteligencia Artificial
    3314 Tecnología Médica
    ISSN
    0263-2241
    Revisión por pares
    SI
    DOI
    10.1016/j.measurement.2025.120259
    Patrocinador
    This research is part of the project PID2023-148895OB-I00, funded by MICIU/AEI/10.13039/501100011033 and FSE+, and part of the project CPP2022-009735, funded by MICIU/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR. This research was also supported by the project “0043_NET4SLEEP_2_E”, cofunded by the European Union through the Interreg VI-A Spain-Portugal Program (POCTEP) 2021-2027; and by “CIBER-Consorcio Centro de Investigación Biomédica en Red” (CB19/01/00012) through “Instituto de Salud Carlos III (ISCIII)”, co-funded with European Regional Development Fund. The Childhood Adenotonsillectomy Trial (CHAT) was supported by the National Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989). The National Sleep Research Resource was supported by the National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002). The Pediatric Adenotonsillectomy Trial for Snoring (PATS) study was supported by the U.S. National Institutes of Health, National Heart, Lung, and Blood Institute (1U01HL125307, 1U01HL125295). The National Sleep Research Resource was supported by the U.S. National Institutes of Health, National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002). C. García-Vicente was supported by ‘Ayudas para contratos predoctorales para la Formación de Doctores’ grant (PRE2021-100792) from the “Ministerio de Ciencia, Innovación y Universidades”. David Gozal was supported in part by NIH grants HL166617 and HL169266.
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S026322412503619X?via%3Dihub#ak005
    Propietario de los Derechos
    © 2025 The Authors
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/81359
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [57]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    1-s2.0-S026322412503619X-main.pdf
    Tamaño:
    7.349Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10