Show simple item record

dc.contributor.authorPerez-Velasco, Sergio
dc.contributor.authorSantamaria-Vazquez, Eduardo
dc.contributor.authorMartinez-Cagigal, Victor
dc.contributor.authorMarcos-Martinez, Diego
dc.contributor.authorHornero, Roberto
dc.date.accessioned2026-01-15T17:06:50Z
dc.date.available2026-01-15T17:06:50Z
dc.date.issued2022-06-27
dc.identifier.citationIEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1766-1775, 2022es
dc.identifier.issn1534-4320es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/81636
dc.descriptionProducción Científicaes
dc.description.abstractIn this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain throughthemid-sagittalplane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym’s performance on inter-subject MI classification with ShallowConvNet, Deep-ConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control ( 70% accuracy). Furthermore, these results are achieved using only 16 electrodes of themore than 60 available on some datasets. Our implementation of EEGSym, which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on intersubject MI classification.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/*
dc.subject.classificationBrain computer interface (BCI), deep learning (DL), motor imagery, transfer learning, inter-subjectes
dc.titleEEGSym: Overcoming Inter-Subject Variability in Motor Imagery Based BCIs With Deep Learninges
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1109/TNSRE.2022.3186442es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9807323es
dc.identifier.publicationfirstpage1766es
dc.identifier.publicationlastpage1775es
dc.identifier.publicationtitleIEEE Transactions on Neural Systems and Rehabilitation Engineeringes
dc.identifier.publicationvolume30es
dc.peerreviewedSIes
dc.description.projectThis work was supported in part by the ‘Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación’ and European Regional Development Fund (ERDF) ‘A way of making Europe’ under Grant PID2020-115468RB-I00 and Grant RTC2019- 007350-1; in part by the European Commission and ERDF through the R+D+i Project ‘Análisis y Correlación Entre la Epigenética y la Actividad Cerebral Para Evaluar el Riesgo de Migraña Crónica y Episódica en Mujeres’ (Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–2020); and in part by the CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III.es
dc.identifier.essn1558-0210es
dc.rightsAttribution-NoDerivs 3.0 Unported*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record