• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/81636

    Título
    EEGSym: Overcoming Inter-Subject Variability in Motor Imagery Based BCIs With Deep Learning
    Autor
    Perez-Velasco, Sergio
    Santamaria-Vazquez, Eduardo
    Martinez-Cagigal, Victor
    Marcos-Martinez, Diego
    Hornero, Roberto
    Año del Documento
    2022-06-27
    Editorial
    IEEE
    Descripción
    Producción Científica
    Documento Fuente
    IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1766-1775, 2022
    Abstract
    In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain throughthemid-sagittalplane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym’s performance on inter-subject MI classification with ShallowConvNet, Deep-ConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control ( 70% accuracy). Furthermore, these results are achieved using only 16 electrodes of themore than 60 available on some datasets. Our implementation of EEGSym, which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on intersubject MI classification.
    Palabras Clave
    Brain computer interface (BCI), deep learning (DL), motor imagery, transfer learning, inter-subject
    ISSN
    1534-4320
    Revisión por pares
    SI
    DOI
    10.1109/TNSRE.2022.3186442
    Patrocinador
    This work was supported in part by the ‘Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación’ and European Regional Development Fund (ERDF) ‘A way of making Europe’ under Grant PID2020-115468RB-I00 and Grant RTC2019- 007350-1; in part by the European Commission and ERDF through the R+D+i Project ‘Análisis y Correlación Entre la Epigenética y la Actividad Cerebral Para Evaluar el Riesgo de Migraña Crónica y Episódica en Mujeres’ (Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–2020); and in part by the CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III.
    Version del Editor
    https://ieeexplore.ieee.org/document/9807323
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/81636
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [396]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    EEGSym_Overcoming_Inter-Subject_Variability_in_Motor_Imagery_Based_BCIs_With_Deep_Learning.pdf
    Tamaño:
    1.291Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Thumbnail
    Mostra/Apri
    Attribution-NoDerivs 3.0 UnportedLa licencia del ítem se describe como Attribution-NoDerivs 3.0 Unported

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10