Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-Vicente, Clara
dc.contributor.authorGutiérrez-Tobal, Gonzalo C.
dc.contributor.authorJiménez-García, Jorge
dc.contributor.authorMartín-Montero, Adrián
dc.contributor.authorGozal, David
dc.contributor.authorHornero, Roberto
dc.date.accessioned2026-01-16T11:41:39Z
dc.date.available2026-01-16T11:41:39Z
dc.date.issued2023-12
dc.identifier.citationComputers in Biology and Medicine, Diciembre 2023, vol. 167, p. 107628es
dc.identifier.issn0010-4825es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/81676
dc.descriptionProducción Científicaes
dc.description.abstractObstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized by partial or complete obstruction of the upper airway during sleep. The respiratory events in OSA induce transient alterations of the cardiovascular system that ultimately can lead to increased cardiovascular risk in affected children. Therefore, a timely and accurate diagnosis is of utmost importance. However, polysomnography (PSG), the standard diagnostic test for pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible, particularly in low-resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a novel deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram tracing (ECG). Specifically, a new convolutional neural network (CNN)-based regression model was implemented to automatically predict pediatric OSA by estimating its severity based on the apnea-hypopnea index (AHI) and deriving 4 OSA severity categories. For this purpose, overnight ECGs from 1,610 PSG recordings obtained from the Childhood Adenotonsillectomy Trial (CHAT) database were used. The database was randomly divided into approximately 60%, 20%, and 20% for training, validation, and testing, respectively. The diagnostic performance of the proposed CNN model largely outperformed the most accurate previous algorithms that relied on ECG-derived features (4-class Cohen's kappa coefficient of 0.373 versus 0.166). Specifically, for AHI cutoff values of 1, 5, and 10 events/hour, the binary classification achieved sensitivities of 84.19%, 76.67%, and 53.66%; specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 75.92%, 86.96%, and 91.97%, respectively. Therefore, pediatric OSA can be readily identified by our proposed CNN model, which provides a simpler, faster, and more accessible diagnostic test that can be implemented in clinical practice.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleECG-based convolutional neural network in pediatric obstructive sleep apnea diagnosises
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.compbiomed.2023.107628es
dc.identifier.publicationfirstpage107628es
dc.identifier.publicationtitleComputers in Biology and Medicinees
dc.identifier.publicationvolume167es
dc.peerreviewedSIes
dc.description.projectThis research was supported by ‘Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación/10.13039/501100011033/‘, ‘ERDF A way of making Europe’, and ‘European Union NextGenerationEU/PRTR’ under projects PID2020-115468RB-I00 and PDC2021-120775-I00, and by ‘CIBER -Consorcio Centro de Investigación Biomédica en Red-(CB19/01/00012)’ through ‘Instituto de Salud Carlos III’, as well as under the project TinyHeart from 2022 Early Stage call. The Childhood Adenotonsillectomy Trial (CHAT) was supported by the National Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989). The National Sleep Research Resource was supported by the National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002). C. García-Vicente was in receipt of a ‘Ayudas para contratos predoctorales para la Formación de Doctores’ grant from the ‘Minisiterio de Ciencia, Innovación y Universidades (PRE2021-100792)’. J. Jiménez-García was in receipt of a PIF-UVa grant of the University of Valladolid. A. Martín-Montero was in receipt of a ‘Ayudas para contratos predoctorales para la Formación de Doctores’ grant from the ‘Ministerio de Ciencia, Innovación y Universidades (PRE2018-085219)’. GC. Gutiérrez-Tobal is supported by a post-doctoral grant from the University of Valladolid.es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco3314 Tecnología Médicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem