• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/81785

    Título
    Deep learning to classify the ripeness of coffee fruit in the mechanized harvesting process
    Autor
    Zanella, Marco Antonio
    Barrio Conde, Mikel
    Gómez Gil, JaimeAutoridad UVA Orcid
    Aguiar Pérez, Javier ManuelAutoridad UVA Orcid
    Pérez Juárez, María ÁngelesAutoridad UVA Orcid
    Silva, Fabio Moreira de
    Año del Documento
    2025
    Editorial
    Piracicaba SP: Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz
    Descripción
    Producción Científica
    Documento Fuente
    Scientia Agricola, 2025, vol. 82.
    Abstract
    The coffee industry is a vital sector of global agriculture. Coffee is one of the most widely traded plant products in the world. Coffee fruit ripeness affects the taste and aroma of the final brewed beverage, coffee farms’ overall yield and economic viability. Traditional methods of assessing coffee fruit ripeness, which rely on manual inspection by skilled workers, are labor-intensive, time-consuming, and prone to subjective interpretation. In this study, we have used the YOLOv9 (You Only Look Once) algorithm that outperformed previous versions particularly by using a new lightweight network architecture called the gelan-c model. The objective of this study was to identify and classify quickly and accurately the degree of ripeness of the harvested coffee fruits into the following classes: unripe, ripe-red, ripe-yellow, and overripe. The images were captured during harvesting with a commercial harvester in a coffee farm in the southern region of the state of Minas Gerais, Brazil. Data augmentation was performed to increase the dataset in terms of images and bounding boxes. Detection performance was obtained for image sizes between 128 and 640 px. The best performance was achieved with an image size of 640 px, reaching a precision level of 99 %, a recall of 98.5 %, an F1-Score of 98.75 %, a mAP@0.5 of 99.25 %, and a mAP@0.5:0.95 of about 85 % during the validation phase. Our study significantly outperforms previous studies on fruit classification in terms of models used, data augmentation strategies, and overall performance.
    Materias (normalizadas)
    Ciencias agrarias
    Cultivo de café
    Procesos mecanizados de cosecha
    Deep Learning
    Materias Unesco
    31 Ciencias Agrarias
    1203.04 Inteligencia Artificial
    Palabras Clave
    YOLO
    Cultivo de café
    Detección de frutos
    Agricultura de precisión
    ISSN
    1678-992X
    Revisión por pares
    SI
    DOI
    10.1590/1678-992X-2024-0156
    Patrocinador
    Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
    Comisión Europea-Horizonte 2020: proyecto Marie Sklodowska-Curie (101008297)
    Instituto de Neurociencias de Castilla y León (Universidad de Salamanca)
    Version del Editor
    https://www.scielo.br/j/sa/a/KtS47SY7y4ytX8TtrvcxRnH/?lang=en
    Propietario de los Derechos
    © The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/81785
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [399]
    Show full item record
    Files in this item
    Nombre:
    Deep-learning-to-classify-the-ripeness-of-coffee-fruit.pdf
    Tamaño:
    4.890Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10