Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/81785
Título
Deep learning to classify the ripeness of coffee fruit in the mechanized harvesting process
Autor
Año del Documento
2025
Editorial
Piracicaba SP: Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz
Descripción
Producción Científica
Documento Fuente
Scientia Agricola, 2025, vol. 82.
Abstract
The coffee industry is a vital sector of global agriculture. Coffee is one of
the most widely traded plant products in the world. Coffee fruit ripeness affects the taste
and aroma of the final brewed beverage, coffee farms’ overall yield and economic viability.
Traditional methods of assessing coffee fruit ripeness, which rely on manual inspection by
skilled workers, are labor-intensive, time-consuming, and prone to subjective interpretation.
In this study, we have used the YOLOv9 (You Only Look Once) algorithm that outperformed
previous versions particularly by using a new lightweight network architecture called the
gelan-c model. The objective of this study was to identify and classify quickly and accurately
the degree of ripeness of the harvested coffee fruits into the following classes: unripe,
ripe-red, ripe-yellow, and overripe. The images were captured during harvesting with a
commercial harvester in a coffee farm in the southern region of the state of Minas Gerais,
Brazil. Data augmentation was performed to increase the dataset in terms of images
and bounding boxes. Detection performance was obtained for image sizes between 128
and 640 px. The best performance was achieved with an image size of 640 px, reaching
a precision level of 99 %, a recall of 98.5 %, an F1-Score of 98.75 %, a mAP@0.5 of
99.25 %, and a mAP@0.5:0.95 of about 85 % during the validation phase. Our study
significantly outperforms previous studies on fruit classification in terms of models used,
data augmentation strategies, and overall performance.
Materias (normalizadas)
Ciencias agrarias
Cultivo de café
Procesos mecanizados de cosecha
Deep Learning
Materias Unesco
31 Ciencias Agrarias
1203.04 Inteligencia Artificial
Palabras Clave
YOLO
Cultivo de café
Detección de frutos
Agricultura de precisión
ISSN
1678-992X
Revisión por pares
SI
Patrocinador
Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
Comisión Europea-Horizonte 2020: proyecto Marie Sklodowska-Curie (101008297)
Instituto de Neurociencias de Castilla y León (Universidad de Salamanca)
Comisión Europea-Horizonte 2020: proyecto Marie Sklodowska-Curie (101008297)
Instituto de Neurociencias de Castilla y León (Universidad de Salamanca)
Version del Editor
Propietario de los Derechos
© The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Tamaño:
4.890Mb
Formato:
Adobe PDF
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional










