• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Grupos de Investigación
    • Entornos de Computación Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM)
    • ECA-SIMM - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Grupos de Investigación
    • Entornos de Computación Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM)
    • ECA-SIMM - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82062

    Título
    Prosodic Feature Analysis for Automatic Speech Assessment and Individual Report Generation in People with Down Syndrome
    Autor
    Corrales-Astorgano, Mario
    González-Ferreras, César
    Escudero-Mancebo, David
    Cardeñoso-Payo, Valentín
    Año del Documento
    2024
    Editorial
    MDPI
    Documento Fuente
    Applied Sciences, January 2024, vol. 14, n. 1, p. 1-13.
    Abstract
    Evaluating prosodic quality poses unique challenges due to the intricate nature of prosody, which encompasses multiple form–function profiles. These challenges are more pronounced when analyzing the voices of individuals with Down syndrome (DS) due to increased variability. This paper introduces a procedure for selecting informative prosodic features based on both the disparity between human-rated DS productions and their divergence from the productions of typical users, utilizing a corpus constructed through a video game. Individual reports of five speakers with DS are created by comparing the selected features of each user with recordings of individuals without intellectual disabilities. The acquired features primarily relate to the temporal domain, reducing dependence on pitch detection algorithms, which encounter difficulties when dealing with pathological voices compared to typical ones. These individual reports can be instrumental in identifying specific issues for each speaker, assisting therapists in defining tailored training sessions based on the speaker’s profile.
    Palabras Clave
    Down syndrome; automatic classification; prosody
    ISSN
    2076-3417
    Revisión por pares
    SI
    DOI
    10.3390/app14010293
    Patrocinador
    This work was carried out in the Project PID2021-126315OB-I00 that was supported by MCIN/AEI/10.13039/501100011033/FEDER,EU.
    Version del Editor
    https://www.mdpi.com/2076-3417/14/1/293
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/82062
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ECA-SIMM - Artículos de revista [11]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    applsci-14-00293-v2.pdf
    Tamaño:
    1.557Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10