| dc.contributor.author | del Barrio, Eustasio | |
| dc.contributor.author | Sanz, Alberto González | |
| dc.contributor.author | Hallin, Marc | |
| dc.date.accessioned | 2026-01-23T10:53:34Z | |
| dc.date.available | 2026-01-23T10:53:34Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2025, VOL. 120, NO. 550, 818–832: Theory and Methods | es |
| dc.identifier.issn | 0162-1459 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/82067 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | Building on recent measure-transportation-based concepts of multivariate quantiles, we are considering the
problem of nonparametric multiple-output quantile regression. Our approach defines nested conditional
center-outward quantile regression contours and regions with given conditional probability content, the
graphs of which constitute nested center-outward quantile regression tubes with given unconditional prob-
ability content; these (conditional and unconditional) probability contents do not depend on the underlying
distribution—an essential property of quantile concepts. Empirical counterparts of these concepts are
constructed, yielding interpretable empirical contours, regions, and tubes which are shown to consistently
reconstruct (in the Pompeiu-Hausdorff topology) their population versions. Our method is entirely non-
parametric and performs well in simulations—with possible heteroscedasticity and nonlinear trends. Its
potential as a data-analytic tool is illustrated on some real datasets. Supplementary materials for this article
are available online, including a standardized description of the materials available for reproducing the work. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | spa | es |
| dc.publisher | TAYLOR & FRANCIS INC | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Estadística | es |
| dc.subject.classification | Center-outward quantiles; Multiple-output regression; Optimal transport | es |
| dc.title | Nonparametric multiple-output center-outward quantile regression | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.identifier.doi | 10.1080/01621459.2024.2366029 | es |
| dc.relation.publisherversion | https://www.tandfonline.com/doi/epdf/10.1080/01621459.2024.2366029?src=getftr&utm_source=clarivate&getft_integrator=clarivate | es |
| dc.identifier.publicationfirstpage | 818 | es |
| dc.identifier.publicationissue | 550 | es |
| dc.identifier.publicationlastpage | 832 | es |
| dc.identifier.publicationtitle | Journal of the American Statistical Association | es |
| dc.identifier.publicationvolume | 120 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | Este trabajo forma parte del proyecto de investigación: MCIN/AEI Grant PID2021- 128314NB-I00 | es |
| dc.identifier.essn | 1537-274X | es |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | es |