Afficher la notice abrégée

dc.contributor.authordel Barrio, Eustasio
dc.contributor.authorSanz, Alberto González
dc.contributor.authorHallin, Marc
dc.date.accessioned2026-01-23T10:53:34Z
dc.date.available2026-01-23T10:53:34Z
dc.date.issued2025
dc.identifier.citationJOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2025, VOL. 120, NO. 550, 818–832: Theory and Methodses
dc.identifier.issn0162-1459es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/82067
dc.descriptionProducción Científicaes
dc.description.abstractBuilding on recent measure-transportation-based concepts of multivariate quantiles, we are considering the problem of nonparametric multiple-output quantile regression. Our approach defines nested conditional center-outward quantile regression contours and regions with given conditional probability content, the graphs of which constitute nested center-outward quantile regression tubes with given unconditional prob- ability content; these (conditional and unconditional) probability contents do not depend on the underlying distribution—an essential property of quantile concepts. Empirical counterparts of these concepts are constructed, yielding interpretable empirical contours, regions, and tubes which are shown to consistently reconstruct (in the Pompeiu-Hausdorff topology) their population versions. Our method is entirely non- parametric and performs well in simulations—with possible heteroscedasticity and nonlinear trends. Its potential as a data-analytic tool is illustrated on some real datasets. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherTAYLOR & FRANCIS INCes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEstadísticaes
dc.subject.classificationCenter-outward quantiles; Multiple-output regression; Optimal transportes
dc.titleNonparametric multiple-output center-outward quantile regressiones
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1080/01621459.2024.2366029es
dc.relation.publisherversionhttps://www.tandfonline.com/doi/epdf/10.1080/01621459.2024.2366029?src=getftr&utm_source=clarivate&getft_integrator=clarivatees
dc.identifier.publicationfirstpage818es
dc.identifier.publicationissue550es
dc.identifier.publicationlastpage832es
dc.identifier.publicationtitleJournal of the American Statistical Associationes
dc.identifier.publicationvolume120es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación: MCIN/AEI Grant PID2021- 128314NB-I00es
dc.identifier.essn1537-274Xes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée