• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82067

    Título
    Nonparametric multiple-output center-outward quantile regression
    Autor
    del Barrio, Eustasio
    Sanz, Alberto González
    Hallin, Marc
    Año del Documento
    2025
    Editorial
    TAYLOR & FRANCIS INC
    Descripción
    Producción Científica
    Documento Fuente
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2025, VOL. 120, NO. 550, 818–832: Theory and Methods
    Abstract
    Building on recent measure-transportation-based concepts of multivariate quantiles, we are considering the problem of nonparametric multiple-output quantile regression. Our approach defines nested conditional center-outward quantile regression contours and regions with given conditional probability content, the graphs of which constitute nested center-outward quantile regression tubes with given unconditional prob- ability content; these (conditional and unconditional) probability contents do not depend on the underlying distribution—an essential property of quantile concepts. Empirical counterparts of these concepts are constructed, yielding interpretable empirical contours, regions, and tubes which are shown to consistently reconstruct (in the Pompeiu-Hausdorff topology) their population versions. Our method is entirely non- parametric and performs well in simulations—with possible heteroscedasticity and nonlinear trends. Its potential as a data-analytic tool is illustrated on some real datasets. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
    Materias (normalizadas)
    Estadística
    Palabras Clave
    Center-outward quantiles; Multiple-output regression; Optimal transport
    ISSN
    0162-1459
    Revisión por pares
    SI
    DOI
    10.1080/01621459.2024.2366029
    Patrocinador
    Este trabajo forma parte del proyecto de investigación: MCIN/AEI Grant PID2021- 128314NB-I00
    Version del Editor
    https://www.tandfonline.com/doi/epdf/10.1080/01621459.2024.2366029?src=getftr&utm_source=clarivate&getft_integrator=clarivate
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/82067
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Artículos de revista [85]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    2204.11756v2.pdf
    Tamaño:
    8.455Mb
    Formato:
    Adobe PDF
    Descripción:
    Versión casi final del artículo
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10