• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82077

    Título
    Concatenation Augmentation for Improving Deep Learning Models in Finance NLP with Scarce Data
    Autor
    Vaca, César
    Román-Gallego, Jesús-Ángel
    Barroso-García, Verónica
    Tejerina, Fernando
    Sahelices, Benjamín
    Año del Documento
    2025
    Editorial
    MDPI Electronics
    Documento Fuente
    Vaca, C.; Román-Gallego, J.-Á.; Barroso-García, V.; Tejerina, F.; Sahelices, B. Concatenation Augmentation for Improving Deep Learning Models in Finance NLP with Scarce Data. Electronics 2025, 14, 2289. https://doi.org/10.3390/electronics14112289
    Resumo
    Nowadays, financial institutions increasingly leverage artificial intelligence to enhance decision-making and optimize investment strategies. A specific application is the automatic analysis of large volumes of unstructured textual data to extract relevant information through deep learning (DL) methods. However, the effectiveness of these methods is often limited by the scarcity of high-quality labeled data. To address this, we propose a new data augmentation technique, Concatenation Augmentation (CA). This is designed to overcome the challenges of processing unstructured text, particularly in analyzing professional profiles from corporate governance reports. Based on Mixup and Label Smoothing Regularization principles, CA generates new text samples by concatenating inputs and applying a convex additive operator, preserving its spatial and semantic coherence. Our proposal achieved hit rates between 92.4% and 99.7%, significantly outperforming other data augmentation techniques. CA improved the precision and robustness of the DL models used for extracting critical information from corporate reports. This technique offers easy integration into existing models and incurs low computational costs. Its efficiency facilitates rapid model adaptation to new data and enhances overall precision. Hence, CA would be a potential and valuable data augmentation tool for boosting DL model performance and efficiency in analyzing financial and governance textual data.
    Revisión por pares
    SI
    DOI
    10.3390/electronics14112289
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/82077
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [129]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    electronics-14-02289.pdf
    Tamaño:
    1.091Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10