• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82079

    Título
    Board of Directors' Profile: A Case for Deep Learning as a Valid Methodology to Finance Research.
    Autor
    Vaca Rodríguez, CésarAutoridad UVA
    Tejerina, Fernando
    Sahelices Fernández, BenjamínAutoridad UVA Orcid
    Año del Documento
    2022
    Descripción
    Producción Científica
    Documento Fuente
    Vaca, C., Tejerina, F., and Sahelices, B. (2022). Board of Directors’ Profile: A Case for Deep Learning as a Valid Methodology to Finance Research. International Journal of Interactive Multimedia and Artificial Intelligence, 7(6), 60–68. https://doi.org/10.9781/ijimai.2022.09.005
    Resumen
    This paper presents a Deep Learning (DL) model for natural language processing of unstructured CVs to generate a six-dimensional profile of the professional experience of the Spanish companies’ board of directors. We show the complete process starting with open data extraction and cleaning, the generation of a labeled dataset for supervised learning, the development, training and validation of a DL model capable of accurately analyzing the dataset, and, finally, a data analysis work based on the automated generation of the professional profiles of more than 6,000 directors of Spanish listed companies between 2003 and 2020. An RNN-LSTM neural network has been trained in three phases starting from a random initial state, (1) learning of basic structures of the Spanish language, (2) fine tuning for scientific texts in the field of economics and finance, and (3) regression modeling to generate a six-dimensional profile based on a generalization of sentiment classification systems. The complete training has been carried out with very low computational requirements, having a total duration of 120 hours of processing in a low-end GPU. The results obtained in the validation of the DL model show great accuracy, obtaining a value for the standard deviation of the mean error between 0.015 and 0.033. As a result, we have been able to outline with a high degree of reliability the profile of the listed Spanish companies’ board of directors. We found that the predominant profile is that of directors with experience in executive or consultancy positions, followed by the financial profile. The results achieved show the potential of DL in social science research, particularly in Finance.
    ISSN
    1989-1660
    Revisión por pares
    SI
    DOI
    10.9781/ijimai.2022.09.005
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/82079
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [129]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    ijimai7_6_7.pdf
    Tamaño:
    1.199Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10