• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Construcciones Arquitectónicas, Ingeniería del Terreno y Mecánica de los Medios Continuos ...
    • DEP43 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Construcciones Arquitectónicas, Ingeniería del Terreno y Mecánica de los Medios Continuos ...
    • DEP43 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82103

    Título
    An iterative neural network approach applied to human-induced force reconstruction using a non-linear electrodynamic shaker
    Autor
    Peláez-Rodríguez, César
    Magdaleno, Álvaro
    García Terán, José MaríaAutoridad UVA
    Pérez-Aracil, Jorge
    Salcedo-Sanz, Sancho
    Lorenzana, Antolín
    Año del Documento
    2024
    Editorial
    Elsevier Ltd.
    Descripción
    Producción Científica
    Documento Fuente
    Heliyon, Junio, 2025
    Abstract
    Human-induced force analysis plays an important role across a wide range of disciplines, including biomechanics, sport engineering, health monitoring or structural engineering. Specifically, this paper focuses on the replication of ground reaction forces (GRF) generated by humans during movement. They can provide critical information about human-mechanics and be used to optimize athletic performance, prevent and rehabilitate injuries and assess structural vibrations in engineering applications. It is presented an experimental approach that uses an electrodynamic shaker (APS 400) to replicate GRFs generated by humans during movement, with a high degree of accuracy. Successful force reconstruction implies a high fidelity in signal reproduction with the electrodynamic shaker, which leads to an inverse problem, where a reference signal must be replicated with a nonlinear and non-invertible system. The solution presented in this paper relies on the development of an iterative neural network and an inversion-free approach, which aims to generate the most effective drive signal that minimizes the error between the experimental force signal exerted by the shaker and the reference. After the optimization process, the weights of the neural network are updated to make the shaker behave as desired, achieving excellent results in both time and frequency domains.
    Palabras Clave
    Forces reconstruction Human-induced forces Artificial neural networks Electrodynamic shaker Ground reaction forces
    ISSN
    2405-8440
    Revisión por pares
    SI
    DOI
    10.1016/j.heliyon.2024.e32858
    Patrocinador
    Los autores desean expresar su agradecimiento a la AEI, Gobierno de España (10.13039/501100011033) y a “FEDER Una manera de hacer Europa”, por el apoyo parcial a través de la subvención PID2022-140117NB-I00. Esta investigación también ha sido apoyada parcialmente por el proyecto PID2020-115454GB-C21 del Ministerio de Ciencia e Innovación de España (MICINN).
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/82103
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP43 - Artículos de revista [77]
    Show full item record
    Files in this item
    Nombre:
    2024_HELIYON_An iterative neural network approach applied to human-induced.pdf
    Tamaño:
    2.498Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10