• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Entornos de Computación Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM)
    • ECA-SIMM - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Entornos de Computación Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM)
    • ECA-SIMM - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82144

    Título
    Integration of generative LLMs into the new generation of chatbots to enhance human-computer interaction
    Autor
    Vicente Oliva, Guillermo
    Escudero Mancebo, DavidAutoridad UVA
    González Ferreras, CésarAutoridad UVA Orcid
    Cardeñoso Payo, ValentínAutoridad UVA Orcid
    Congreso
    XXIV International Conference on Human-Computer Interaction INTERACCIÓN 2024
    Año del Documento
    2024
    Editorial
    Julián Flores, José A. Taboada, Alejandro Catalá, Nelly Condori-Fernández, Arcadio Reyes-Lecuona
    Documento Fuente
    Julián Flores, José A. Taboada, Alejandro Catalá, Nelly Condori-Fernández, Arcadio Reyes-Lecuona. XXIV International Conference on Human-Computer Interaction INTERACCIÓN 2024. A Coruña, España. p. 58-63
    Résumé
    Most conventional chatbots rely on strategies that extract information from databases and use predefined templates to generate responses, which poses a significant limitation in maintaining natural, rich, and contextually adapted dialogues. This study examines the enhancement of chatbots through the integration of application programming interfaces (APIs) from large pretrained language models (LLMs), focusing particularly on the GPT architecture. First, the conventional architectural paradigm of chatbots is described, followed by a description of the integration of GPT-based components. As a proof of concept, this enhanced architecture is implemented in a controlled environment, evaluating coherence, contextual relevance, and adaptability. Results, based on user opinions, indicate a significant improvement in the quality of interactions with the enhanced chatbot compared to its conventional counterpart. In conclusion, the integration of LLM APIs, in this case GPT, represents a notable advancement in dialogue systems, offering more contextual and adaptive responses. This study anticipates a relevant leap in chatbot technology, suggesting a paradigm shift towards more humanized and effective human-computer interactions in the coming years.
    ISBN
    978-84-09-62293-1
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/82144
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ECA-SIMM - Comunicaciones a congresos, conferencias, etc. [14]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    vicente24.pdf
    Tamaño:
    521.5Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10