Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82147
Título
Pronunciation Assessment and Automated Analysis of Speech in Individuals with Down Syndrome: Phonetic and Fluency Dimensions
Autor
Congreso
IberSPEECH 2024
Año del Documento
2024
Editorial
António Teixeira, Carlos Martinez-Hinarejos, Eduardo Lleida and Dayana Ribas
Documento Fuente
António Teixeira, Carlos Martinez-Hinarejos, Eduardo Lleida and Dayana Ribas. IberSPEECH 2024. Aveiro, Portugal. p. 26-30
Zusammenfassung
In this study, we analyze the potential use of an annotated corpus to identify various dimensions of speech quality, including phonetics and fluency, in individuals with Down syndrome, enabling the development of automated assessment systems. Two experiments were conducted: for phonetic evaluation, we used the Goodness of Pronunciation (GoP) metric with an automatic segmentation system and correlated results with a speech therapist’s evaluations, showing a positive trend despite not notably high correlation values. For fluency assessment, deep learning models like wav2vec were used to extract audio features, and an SVM classifier trained on a fluency-focused corpus categorized the samples. The outcomes highlight the complexities of evaluating such phenomena, with variability depending on the specific type of disfluency detected.
Palabras Clave
speech disorders, pronunciation assessment, disfluency detection, Down syndrome
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource









