• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Entornos de Computación Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM)
    • ECA-SIMM - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Entornos de Computación Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM)
    • ECA-SIMM - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82147

    Título
    Pronunciation Assessment and Automated Analysis of Speech in Individuals with Down Syndrome: Phonetic and Fluency Dimensions
    Autor
    Corrales-Astorgano, MarioAutoridad UVA
    González-Ferreras, César
    Escudero-Mancebo, David
    Aguilar, Lourdes
    Flores-Lucas, Valle
    Cardeñoso-Payo, Valentín
    Vivaracho-Pascual, CarlosAutoridad UVA
    Congreso
    IberSPEECH 2024
    Año del Documento
    2024
    Editorial
    António Teixeira, Carlos Martinez-Hinarejos, Eduardo Lleida and Dayana Ribas
    Documento Fuente
    António Teixeira, Carlos Martinez-Hinarejos, Eduardo Lleida and Dayana Ribas. IberSPEECH 2024. Aveiro, Portugal. p. 26-30
    Abstract
    In this study, we analyze the potential use of an annotated corpus to identify various dimensions of speech quality, including phonetics and fluency, in individuals with Down syndrome, enabling the development of automated assessment systems. Two experiments were conducted: for phonetic evaluation, we used the Goodness of Pronunciation (GoP) metric with an automatic segmentation system and correlated results with a speech therapist’s evaluations, showing a positive trend despite not notably high correlation values. For fluency assessment, deep learning models like wav2vec were used to extract audio features, and an SVM classifier trained on a fluency-focused corpus categorized the samples. The outcomes highlight the complexities of evaluating such phenomena, with variability depending on the specific type of disfluency detected.
    Palabras Clave
    speech disorders, pronunciation assessment, disfluency detection, Down syndrome
    DOI
    10.21437/IberSPEECH.2024-6
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/82147
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • ECA-SIMM - Comunicaciones a congresos, conferencias, etc. [14]
    Show full item record
    Files in this item
    Nombre:
    corralesastorgano24_iberspeech.pdf
    Tamaño:
    293.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10