Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82302
Título
A convergence analysis for the approximation to the solution of an age-structured population model with infinite lifespan
Autor
Año del Documento
2025
Editorial
Elsevier
Documento Fuente
Mathematics and Computers in Simulation, 2025, vol. 229, p. 636–651
Abstract
Considering the numerical approximation of the density distribution for an age-structured
population model with unbounded lifespan on a compact interval [0, 𝑇���� ], we prove second order
of convergence for a discretization that adaptively selects its truncated age-interval according to
the exponential rate of decay with age of the solution of the model. It appears that the adaptive
capacity of the length in the truncated age-interval of the discretization to the infinity lifespan is
a very convenient approach for a long-time integration of the model to establish the asymptotic
behavior of its dynamics numerically. The analysis of convergence uses an appropriate weighted
maximum norm with exponential weights to cope with the unbounded age lifespan. We report
experiments to exhibit numerically the theoretical results and the asymptotic behavior of the
dynamics for an age-structured squirrel population model introduced by Sulsky.
Palabras Clave
Age-structured population
Unbounded life-span
Convergence analysis
Numerical methods
Squirrel model
ISSN
0378-4754
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyecto de investigación PID2020-113554GB-I00/AEI/10.13039/501100011033, RED2022-134784-T by MCIN/AEI/10.13039/501100011033 y VA193P20 de la Junta de Castilla y León
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item










