• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82304

    Título
    Numerical approximation and convergence to steady state solutions of a model for the dynamics of the sexual phase of Monogonont rotifera
    Autor
    Abia Llera, Luis MaríaAutoridad UVA Orcid
    Angulo Torga, ÓscarAutoridad UVA Orcid
    López Marcos, Juan CarlosAutoridad UVA
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Chaos, Solitons and Fractals, 2025, vol 191, n 115844
    Abstract
    We consider the numerical approximation of the asymptotic behavior of an age-structured compartmental population model for the dynamics of the sexual phase of Monogonont rotifera. To cope with the difficulties of the infinite lifespan in long-time simulations, the main approach introduces a second order numerical discretization of a reformulation of the model problem in terms of a new computational size variable that evolves with age. The main contribution is to establish second order of convergence of the steady-state solutions of the discrete equations to the theoretical steady states of the continuous age-structured population model. Moreover, we report numerical evidence of a threshold for the male–female encounter rate parameter in the model after which the steady solution becomes unstable and a stable limit cycle appears in the dynamics. Finally, we confirm the effectiveness of the numerical technique we propose, when considering long-time integration of age-structured population models with infinite lifespan.
    Materias Unesco
    1206.13 Ecuaciones Diferenciales en Derivadas Parciales
    Palabras Clave
    Age-structured population model
    Continuous–discrete dynamics
    Asymptotic behavior
    Monogonont rotifera
    Numerical methods
    Unbounded age
    ISSN
    0960-0779
    Revisión por pares
    SI
    DOI
    10.1016/j.chaos.2024.115844
    Patrocinador
    Este trabajo forma parte de los proyectos de investigación: PID2020-113554GBI00/ AEI/10.13039/501100011033 de la AEI y RED202-134784-T by MCIN/AEI/10.13039/ 501100011033.
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0960077924013961?via%3Dihub
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/82304
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [155]
    Show full item record
    Files in this item
    Nombre:
    AbiaAnguloLopezMarcos.pdf
    Tamaño:
    509.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10