Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82304
Título
Numerical approximation and convergence to steady state solutions of a model for the dynamics of the sexual phase of Monogonont rotifera
Año del Documento
2025
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Chaos, Solitons and Fractals, 2025, vol 191, n 115844
Abstract
We consider the numerical approximation of the asymptotic behavior of an age-structured compartmental
population model for the dynamics of the sexual phase of Monogonont rotifera. To cope with the difficulties
of the infinite lifespan in long-time simulations, the main approach introduces a second order numerical
discretization of a reformulation of the model problem in terms of a new computational size variable that
evolves with age. The main contribution is to establish second order of convergence of the steady-state solutions
of the discrete equations to the theoretical steady states of the continuous age-structured population model.
Moreover, we report numerical evidence of a threshold for the male–female encounter rate parameter in the
model after which the steady solution becomes unstable and a stable limit cycle appears in the dynamics.
Finally, we confirm the effectiveness of the numerical technique we propose, when considering long-time
integration of age-structured population models with infinite lifespan.
Materias Unesco
1206.13 Ecuaciones Diferenciales en Derivadas Parciales
Palabras Clave
Age-structured population model
Continuous–discrete dynamics
Asymptotic behavior
Monogonont rotifera
Numerical methods
Unbounded age
ISSN
0960-0779
Revisión por pares
SI
Patrocinador
Este trabajo forma parte de los proyectos de investigación: PID2020-113554GBI00/ AEI/10.13039/501100011033 de la AEI y RED202-134784-T by MCIN/AEI/10.13039/ 501100011033.
Idioma
spa
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item










