Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82397
Título
Central limit theorems for semi-discrete Wasserstein distances
Año del Documento
2024
Descripción
Producción Científica
Documento Fuente
Bernoulli 30 (1) 554 - 580, February 2024
Resumen
We prove a Central Limit Theorem for the empirical optimal transport cost, √nmn+m{Tc(Pn,Qm)−Tc(P,Q)}, in the semi-discrete case, i.e when the distribution P is supported in N points, but without assumptions on Q. We show that the asymptotic distribution is the sup of a centered Gaussian process, which is Gaussian under some additional conditions on the probability Q and on the cost. Such results imply the central limit theorem for the p-Wassertein distance, for p≥1. This means that, for fixed N, the curse of dimensionality is avoided. To better understand the influence of such N, we provide bounds of E|Wpp(P,Qm)−Wpp(P,Q)| depending on m and N. Finally, the semi-discrete framework provides a control on the second derivative of the dual formulation, which yields the first central limit theorem for the optimal transport potentials and Laguerre cells. The results are supported by simulations that help to visualize the given limits and bounds. We analyse also the cases where classical bootstrap works.
Materias (normalizadas)
Estadística
Probabilidad
Palabras Clave
central limit theorem , Laguerre cells , Optimal transport , optimal transport potentials , semi-discrete optimal transport
ISSN
1350-7265
Revisión por pares
SI
Patrocinador
PID2021-128314NB-I00 funded by MCIN/AEI/ 10.13039/501100011033/FEDER, UE
Version del Editor
Propietario de los Derechos
2024 ISI/BS
Idioma
spa
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem








