Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82399
Título
An Improved Central Limit Theorem and Fast Convergence Rates for Entropic Transportation Costs
Año del Documento
2023
Descripción
Producción Científica
Documento Fuente
SIAM Journal on Mathematics of Data Science, Vol. 5, Iss. 3 (2023), 639-669.
Resumen
We prove a central limit theorem for the entropic transportation cost between subgaussian probability measures, centered at the population cost. This is the first result which allows for asymptotically valid inference for entropic optimal transport between measures which are not necessarily discrete. In the compactly supported case, we complement these results with new, faster, convergence rates for the expected entropic transportation cost between empirical measures. Our proof is based on strengthening convergence results for dual solutions to the entropic optimal transport problem.
Materias (normalizadas)
Estadística
Probabilidad
Palabras Clave
optimal transport, entropic regularization, central limit theorem, Sinkhorn divergence
Revisión por pares
SI
Patrocinador
PID2021-128314NB-I00 funded by MCIN/AEI/ 10.13039/501100011033/FEDER, UE
Version del Editor
Propietario de los Derechos
SIAM
Idioma
spa
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem








