Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82400
Título
On approximate validation of models: a Kolmogorov–Smirnov-based approach
Año del Documento
2020
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
TEST, Volume 29, pages 938–965, (2020)
Resumen
Classical tests of fit typically reject a model for large enough real data samples. In contrast, often in statistical practice, a model offers a good description of the data even though it is not the ‘true’ random generator. We consider a more flexible approach based on contamination neighbourhoods: using trimming methods and the Kolmogorov metric, we introduce a functional statistic measuring departures from a contaminated model. We show how the plug-in estimator allows testing of fit for the (slightly) contaminated model vs sensible deviations from it, with uniformly exponentially small type I and type II error probabilities. We also address the asymptotic behaviour of the estimator showing that, under suitable regularity conditions, it asymptotically behaves as the supremum of a Gaussian process. As an application, we explore methods of comparison between descriptive models based on the paradigm of model falseness. We also include some connections of our approach with the false discovery rate setting, showing competitive behaviour when estimating the contamination level, and being applicable in a wider framework.
Materias (normalizadas)
Estadística
ISSN
1133-0686
Revisión por pares
SI
Patrocinador
FEDER, Spanish Ministerio de Economía y Competitividad, Grant MTM2017-86061-C2-1-P and Junta de Castilla y León, Grants VA005P17 and VA002G18
Version del Editor
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem








