Skip navigation
Please use this identifier to cite or link to this item: http://uvadoc.uva.es/handle/10324/21049
Title: Automated Tracking of Drosophila Specimens
Authors: Chao, Rubén
Macía Vázquez, Germán
Zalama Casanova, Eduardo
Gómez García -Bermejo, Jaime
Perán, José Ramón
Issue Date: 2015
Publisher: MDPI
Description: Producción Científica
Citation: Rubén Chao, Germán Macía-Vázquez, Eduardo Zalama, Jaime Gómez-García-Bermejo, and José-Ramón Perán. Automated Tracking of Drosophila Specimens. Sensors. 2015, vol.15. p. 19363-19392
Abstract: The fruit fly Drosophila Melanogaster has become a model organism in the study of neurobiology and behavior patterns. The analysis of the way the fly moves and its behavior is of great scientific interest for research on aspects such as drug tolerance, aggression or ageing in humans. In this article, a procedure for detecting, identifying and tracking numerous specimens of Drosophila by means of computer vision-based sensing systems is presented. This procedure allows dynamic information about each specimen to be collected at each moment, and then for its behavior to be quantitatively characterized. The proposed algorithm operates in three main steps: a pre-processing step, a detection and segmentation step, and tracking shape. The pre-processing and segmentation steps allow some limits of the image acquisition system and some visual artifacts (such as shadows and reflections) to be dealt with. The improvements introduced in the tracking step allow the problems corresponding to identity loss and swaps, caused by the interaction between individual flies, to be solved efficiently. Thus, a robust method that compares favorably to other existing methods is obtained.
Keywords: Visión artificial (robótica)
ISSN: 1424-8220
Peer Review: SI
DOI: 10.3390/s150819369
Sponsor: Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA036U14)
Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA013A12-2)
Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R)
Publisher Version: http://www.mdpi.com/1424-8220/15/8/19369
Language: eng
URI: http://uvadoc.uva.es/handle/10324/21049
Rights: info:eu-repo/semantics/openAccess
Appears in Collections:DEP44 - Artículos de revista

Files in This Item:
File Description SizeFormat 
Automated-tracking-drosophilia.pdf1,93 MBAdobe PDFThumbnail
View/Open

This item is licensed under a Creative Commons License Creative Commons

Suggestions
University of Valladolid
Powered by MIT's. DSpace software, Version 5.5
UVa-STIC