Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/21049
Título: Automated Tracking of Drosophila Specimens
Autor: Chao, Rubén
Macía Vázquez, Germán
Zalama Casanova, Eduardo
Gómez García -Bermejo, Jaime
Perán, José Ramón
Año del Documento: 2015
Editorial: MDPI
Descripción: Producción Científica
Documento Fuente: Rubén Chao, Germán Macía-Vázquez, Eduardo Zalama, Jaime Gómez-García-Bermejo, and José-Ramón Perán. Automated Tracking of Drosophila Specimens. Sensors. 2015, vol.15. p. 19363-19392
Resumen: The fruit fly Drosophila Melanogaster has become a model organism in the study of neurobiology and behavior patterns. The analysis of the way the fly moves and its behavior is of great scientific interest for research on aspects such as drug tolerance, aggression or ageing in humans. In this article, a procedure for detecting, identifying and tracking numerous specimens of Drosophila by means of computer vision-based sensing systems is presented. This procedure allows dynamic information about each specimen to be collected at each moment, and then for its behavior to be quantitatively characterized. The proposed algorithm operates in three main steps: a pre-processing step, a detection and segmentation step, and tracking shape. The pre-processing and segmentation steps allow some limits of the image acquisition system and some visual artifacts (such as shadows and reflections) to be dealt with. The improvements introduced in the tracking step allow the problems corresponding to identity loss and swaps, caused by the interaction between individual flies, to be solved efficiently. Thus, a robust method that compares favorably to other existing methods is obtained.
Materias (normalizadas): Visión artificial (robótica)
ISSN: 1424-8220
Revisión por Pares: SI
DOI: 10.3390/s150819369
Patrocinador: Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA036U14)
Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA013A12-2)
Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R)
Version del Editor: http://www.mdpi.com/1424-8220/15/8/19369
Idioma: eng
URI: http://uvadoc.uva.es/handle/10324/21049
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:DEP44 - Artículos de revista

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Automated-tracking-drosophilia.pdf1,93 MBAdobe PDFThumbnail
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5