Skip navigation
Por favor, use este identificador para citar o enlazar este ítem:
Título: Classification of samples with order restricted discrimination rules. Statistical Analysis in Proteomics
Autor: Conde, David
Fernández, Miguel
Salvador, Bonifacio
Rueda, Cristina
Año del Documento: 2015
Editorial: Springer
Documento Fuente: Kalus Jung (editor). Statistical analysis in proteomics. Humana press, 2015, p. 159-174.
Resumen: In recent years, mass spectrometry techniques have helped proteomics to become a powerful tool for the early diagnosis of cancer, as they help to discover protein profiles specific to each pathological state. One of the questions where proteomics is giving useful practical results is that of classifying patients into one of the possible severity levels of an illness, based on some features measured on the patient. This classification is usually made using one of the many discrimination procedures available in statistical literature. We present in this chapter recently developed restricted discriminant rules that use additional information in terms of orderings on the means, and we illustrate how to apply them to mass spectrometry data using R package dawai. Specifically, we use proteomic prostate cancer data, and we describe all steps needed, including data preprocessing and feature extraction, to build a discriminant rule that classifies samples in one of several disease stages, thus helping diagnosis. The restricted discriminant rules are compared with some standard classifiers that do not take into account the additional information, showing better performance in terms of error rates.
Patrocinador: Ministerio de Ciencia e Innovación grant (MTM2012-37129)
Propietario de los Derechos: Springer
Idioma: eng
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:DEP24 - Capítulos de monografías

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Chapter vfinal.pdf381,57 kBAdobe PDFThumbnail

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5