Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/22960
Título: A Self-Organized ECM-Mimetic Model Based on an Amphiphilic Multiblock Silk-Elastin-Like co-Recombinamer with a Concomitant Dual Physical Gelation Process
Autor: Fernández Colino, A.
Arias Vallejo, F. J.
Alonso, M.
Rodríguez Cabello, J. Carlos
Año del Documento: 2014
Editorial: ACS Publications
Documento Fuente: Biomacromolecules. 2014 Oct 13;15(10):3781-93
Resumen: Although significant progress has been made in the area of injectable hydrogels for biomedical applications and model cell niches, further improvements are still needed, especially in terms of mechanical performance, stability, and biomimicry of the native fibrillar architecture found in the extracellular matrix (ECM). This work focuses on the design and production of a silk-elastin-based injectable multiblock corecombinamer that spontaneously forms a stable physical nanofibrillar hydrogel under physiological conditions. That differs from previously reported silk-elastin-like polymers on a major content and predominance of the elastin-like part, as well as a more complex structure and behavior of such a part of the molecule, which is aimed to obtain well-defined hydrogels. Rheological and DSC experiments showed that this system displays a coordinated and concomitant dual gelation mechanism. In a first stage, a rapid, thermally driven gelation of the corecombinamer solution takes place once the system reaches body temperature due to the thermal responsiveness of the elastin-like (EL) parts and the amphiphilic multiblock design of the corecombinamer. A bridged micellar structure is the dominant microscopic feature of this stage, as demonstrated by AFM and TEM. Completion of the initial stage triggers the second, which is comprised of a stabilization, reinforcement, and microstructuring of the gel. FTIR analysis shows that these events involve the formation of β-sheets around the silk motifs. The emergence of such β-sheet structures leads to the spontaneous self-organization of the gel into the final fibrous structure. Despite the absence of biological cues, here we set the basis of the minimal structure that is able to display such a set of physical properties and undergo microscopic transformation from a solution to a fibrous hydrogel. The results point to the potential of this system as a basis for the development of injectable fibrillar biomaterial platforms toward a fully functional, biomimetic, artificial extracellular matrix, and cell niches.
Palabras Clave: Elastin-like Recombinamers
SELR
Hydrogel
Fibrillar
Artifical extracellular matrix
Revisión por Pares: SI
DOI: doi: 10.1021/bm501051t.
Patrocinador: Este trabajo forma parte de Proyectos de Investigación financiados por la Comisión Europea a través del Fondo Europeo de Desarrollo Regional (ERDF), por el del MINECO (MAT2013-41723-R, MAT2013- 42473-R, PRI-PIBAR-2011-1403 y MAT2012-38043), la Junta de Castilla y León (VA049A11, VA152A12 y VA155A12) y el Instituto de Salud Carlos III bajo el Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León.
Idioma: eng
URI: http://uvadoc.uva.es/handle/10324/22960
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:BIOFORGE - Artículos de revista

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
bm501051t just accepted tetrasilk.pdf1,64 MBAdobe PDFThumbnail
Visualizar/Abrir


Los ítems de UVaDOC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5