Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/24448
Título: Intrafibrillar Mineralization of Self-Assembled Elastin-Like Recombinamer Fibrils
Autor: Li, Yuping
Rodríguez Cabello, José Carlos
Aparicio, onrado
Año del Documento: 2017
Editorial: American Chemical Society
Descripción: Producción Científica
Documento Fuente: ACS Applied Materials & Interfaces, 2017, 9 (7), pp 5838–5846
Resumen: Biomineralization of bone, a controlled process where hydroxyapatite nanocrystals preferentially deposit in collagen fibrils, is achieved by the interplay of the collagen matrix and noncollagenous proteins. Mimicking intrafibrillar mineralization in synthetic systems is highly attractive for the development of advanced hybrid materials with elaborated morphologies and outstanding mechanical properties, as well as understanding the mechanisms of biomineralization. Inspired by nature, intrafibrillar mineralization of collagen fibrils has been successfully replicated in vitro via biomimetic systems, where acidic polymeric additives are used as analogue of noncollagenous proteins in mediating mineralization. The development of synthetic templates that mimic the structure and functions of collagenous matrix in mineralization has yet to be explored. In this study, we demonstrated that self-assembled fibrils of elastin-like recombinamers (ELRs) can induce intrafibrillar mineralization. The ELRs displayed a disordered structure at low temperature but self-assembled into nanofibrils above its inverse transition temperature. In the presence of the self-assembled ELR fibrils, polyaspartate-stabilized amorphous calcium phosphates preferentially infiltrated into the fibrils and then crystallized into hydroxyapatite nanocrystals with their [001] axes aligned parallel to the long axis of the ELR fibril. As the recombinant technology enables designing and producing well-defined ELRs, their molecular and structural properties can be fine-tuned. By examining the ultrastructure of the self-assembled ELRs fibrils as well as their mineralization, we concluded that the spatial confinement formed by a continuum β-spiral structure in an unperturbed fibrillar structure rather than electrostatic interactions or bioactive sequences in the recombinamer composition played the crucial role in inducing intrafibrillar mineralization.
Palabras Clave: Calcificación
Mineralización
Revisión por Pares: SI
DOI: 10.1021/acsami.6b15285
Patrocinador: info:eu-repo/grantAgreement/EC/H2020/646075
info:eu-repo/grantAgreement/EC/H2020/642687
info:eu-repo/grantAgreement/EC/FP7/278557
info:eu-repo/grantAgreement/EC/FP7/317306
Patrocinador: Ministerio de Economía, Industria y Competitividad (Project MAT2013-42473-R and MAT2015-68901R)
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA244U13, VA313U14 and VA015U16)
Version del Editor: http://pubs.acs.org/doi/abs/10.1021/acsami.6b15285
Idioma: eng
URI: http://uvadoc.uva.es/handle/10324/24448
Derechos: info:eu-repo/semantics/openAccess
Embargado hasta2018-08-01
Aparece en las colecciones:Documentos OpenAire(Open Access Infrastructure for Research in Europe)
BIOFORGE - Artículos de revista

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Intrafibrillar Mineralization.pdf3,36 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5