Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/25757
Título: Dynamical properties of nonautonomous functional differential equations with state-dependent delay
Autor: Maroto, Ismael
Núñez, Carmen
Obaya, Rafael
Año del Documento: 2017
Editorial: American Institute of Mathematical Sciences
Documento Fuente: Discrete and Continuous Dynamical Systems 37 (7), 3939-3961
Resumen: The properties of stability of a compact set $K$ which is positively invariant for a semiflow $(\W\times W^\infty([-r,0],\mathbb{R}^n),\Pi,\mathbb{R}^+)$ determined by a family of nonautonomous FDEs with state-dependent delay taking values in $[0,r]$ are analyzed. The solutions of the variational equation through the orbits of $K$ induce linear skew-product semiflows on the bundles $K\times W^\infty([-r,0],\R^n)$ and $K\times C([-r,0],\R^n)$. The coincidence of the upper-Lyapunov exponents for both semiflows is checked, and it is a fundamental tool to prove that the strictly negative character of this upper-Lyapunov exponent is equivalent to the exponential stability of $\mK$ in $\W\times W^\infty([-r,0],\R^n)$ and also to the exponential stability of this compact set when the supremum norm is taken in $W^\infty([-r,0],\R^n)$. In particular, the existence of a uniformly exponentially stable solution of a uniformly almost periodic FDE ensures the existence of exponentially stable almost periodic solutions.
ISSN: 1078-0947
Revisión por Pares: SI
DOI: 10.3934/dcds.2017167
Patrocinador: info:eu-repo/grantAgreement/EC/H2020/643073
Patrocinador: Ministerio de Economía, Industria y Competitividad (MTM2015-66330-P)
Idioma: eng
URI: http://uvadoc.uva.es/handle/10324/25757
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:Documentos OpenAire(Open Access Infrastructure for Research in Europe)
DEP51 - Artículos de revista

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
DynPropSDDE.pdf443,77 kBAdobe PDFThumbnail
Visualizar/Abrir


Los ítems de UVaDOC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5