Skip navigation
Por favor, use este identificador para citar o enlazar este ítem:
Título: Could an array of MEMS microphones be used to monitor machinery condition or diagnose failures?
Autor: del Val Puente, Lara
Herráez Sánchez, Marta
Izquierdo Fuente, Alberto
Villacorta Calvo, Juan José
Suarez vivar, Luis
Congreso: International Congress on Sound and Vibration (ICSV 24)
Año del Documento: 2017
Descripción Física: 8 p
Descripción: Producción Científica
Documento Fuente: Londres (Reino Unido), 23-27July 2017
Resumen: During the last decades, vibration analysis has been used to evaluate condition monitoring and fault diagnosis of complex mechanical systems. The problem associated with these analysis methods is that the employed sensors must be in contact with the vibrant surfaces. To avoid this problem, the current trend is the analysis of the noise, or the acoustic signals, which are directly related with the vibrations, to evaluate condition monitoring and/or fault diagnosis of mechani-cal systems. Both, acoustic and vibration signals, obtained from a system can reveal information related with its operation conditions. Using arrays formed by digital MEMS microphones, which employ acquisition/processing systems based on FPGA, allows creating systems with a high number of sensors paying a reduced cost. This work studies the feasibility of the use of acoustic images, obtained by an array with 64 MEMS microphones (8x8) in a hemianechoic chamber, to detect, characterize and, eventually, identify failure conditions in machinery. The resolution obtained to spatially identify the problem origin in the machine under test. The acous-tic images are processed to extract different feature patterns to identify and classify machinery failures.
Palabras Clave: MEMS microphone array
Fault diagnosis
Patrocinador: MINECO/FEDER, UE TEC 2015-68170-R
Idioma: eng
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:DEP71 - Comunicaciones a congresos, conferencias, etc.

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
ICSV24_article1191.pdf807,76 kBAdobe PDFThumbnail

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5