Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/31337
Título: Nocturnal Oximetry-based Evaluation of Habitually Snoring Children
Autor: Hornero, Roberto
Kheirandish-Gozal, Leila
Gutiérrez-Tobal, Gonzalo C
Philby, Mona F
Alonso-Álvarez, María L
Álvarez, Daniel
Dayyat, Ehab A
Xu, Zhifei
Huang, Yu-Shu
Kakazu, Maximiliano
Li, Albert M
Van Eyck, Annelies
Brockmann, Pablo E
Ehsan, Zarmina
Simakajornboon, Narong
Kaditis, Athanasios G
Vaquerizo-Villar, Fernando
Crespo, Andrea
Sans-Capdevila, Oscar
von Lukowicz, Magnus
Terán-Santos, Joaquín
del Campo, Félix
Poets, Christian F
Ferreira, Rosario
Bertran, Katalina
Zhang, Yamei
Schuen, John
Verhulst, Stijn
Gozal, David
Año del Documento: 2017
Editorial: ATS Journals
Documento Fuente: American Journal of Respiratory and Critical Care Medicine, vol. 196 (12), pp. 1591-1598, 2017
Resumen: Rationale: The vast majority of children around the world undergoing adenotonsillectomy for obstructive sleep apnea–hypopnea syndrome (OSA) are not objectively diagnosed by nocturnal polysomnography because of access availability and cost issues. Automated analysis of nocturnal oximetry (nSpO2), which is readily and globally available, could potentially provide a reliable and convenient diagnostic approach for pediatric OSA. Methods: DeidentifiednSpO2 recordings froma total of 4,191 children originating from13 pediatric sleep laboratories around the worldwere prospectively evaluated after developing and validating an automated neural network algorithm using an initial set of single-channel nSpO2 recordings from 589 patients referred for suspected OSA. Measurements and Main Results: The automatically estimated apnea–hypopnea index (AHI) showed high agreement with AHI from conventional polysomnography (intraclass correlation coefficient, 0.785) when tested in 3,602 additional subjects. Further assessment on the widely used AHI cutoff points of 1, 5, and 10 events/h revealed an incremental diagnostic ability (75.2, 81.7, and 90.2% accuracy; 0.788, 0.854, and 0.913 area under the receiver operating characteristic curve, respectively). Conclusions: Neural network–based automated analyses of nSpO2 recordings provide accurate identification of OSA severity among habitually snoring children with a high pretest probability of OSA. Thus, nocturnal oximetry may enable a simple and effective diagnostic alternative to nocturnal polysomnography, leading to more timely interventions and potentially improved outcomes.
Revisión por Pares: SI
Patrocinador: Supported in part by project VA037 U16 from the Consejer´ıa de Educacio´ n de la Junta de Castilla y Leo´ n and the European Regional Development Fund (FEDER), project RTC-2015-3446-1 from the Ministerio de Econom´ıa y Competitividad and FEDER, and project 153/2015 of the Sociedad Espan˜ ola de Neumolog´ıa y Cirug´ıa Tora´ cica (SEPAR). L.K.-G. is supported by NIH grant 1R01HL130984. M.F.P. was supported by a Fellowship Educational grant award from the Kingdom of Saudi Arabia. D.´A. was in receipt of a Juan de la Cierva grant from the Ministerio de Econom´ıa y Competitividad. The funders played no role in the study design, data collection, data analysis, interpretation, and writing of the manuscript.
Version del Editor: https://www.atsjournals.org/doi/abs/10.1164/rccm.201705-0930OC
Propietario de los Derechos: American Thoracic Society
Idioma: eng
URI: http://uvadoc.uva.es/handle/10324/31337
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:GIB - Artículos de revista

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Hornero et al AJRCCM.pdf1,3 MBAdobe PDFThumbnail
Visualizar/Abrir

Los ítems de UVaDOC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5
UVa-STIC