Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/31357
Título: Automated detection of childhood sleep apnea using discrete wavelet transform of nocturnal oximetry and anthropometric variables
Autor: Crespo, Andrea
Vaquerizo-Villar, Fernando
Álvarez, Daniel
Gutiérrez-Tobal, Gonzalo C
Barroso-García, Verónica
Cerezo-Hernández, Ana
López-Muñiz, Graciela
Kheirandish-Gozal, Leila
Gozal, David
Hornero, Roberto
del Campo, Félix
Congreso: European Respiratory Society International Congress 2017
Año del Documento: 2017
Descripción: Producción Científica
Resumen: Background. Standard pediatric in-lab polysomnography (PSG) is relatively unavailable and particularly intrusive for children. In low resource settings, nocturnal oximetry has been proposed as a feasible and potentially reliable screening tool for childhood obstructive sleep apneahypopnea syndrome (OSAHS), although additional confirmatory evidence is needed. Aims and objectives. Discrete wavelet transform (DWT) could be a useful tool to characterize fluctuations in nocturnal oximetry. We aimed at designing and assessing a model for detecting childhood OSAHS using anthropometric and DWT features. Methods. A total of 298 children with clinical suspicion of OSAHS underwent in-lab PSG. A cut-off of 5 events/h was stipulated as confirming OSAHS. DWT was used to inspect the spectral content of oximetry in frequency bands linked with apnea pseudo-periodicity: detail levels D9 (0.024-0.049 Hz) and D10 (0.012-0.024 Hz). Mean, variance, minimum, and maximum of DWT coefficients were computed. Stepwise logistic regression was employed to build an OSAHS model from DWT, age, gender, and body mass index (BMI) z score. Training (60%) and test (40%) sets were randomly allocated. Results. Age, gender, D9 mean, and D10 variance were automatically selected. Our model reached 79.1% sensitivity, 81.7% specificity, 4.33 LR+, 0.26 LR-, and 80.5% accuracy in the test set. Conclusions. Features from DWT coefficients and anthropometric variables such as age provide complementary information that enables detection of moderate-to-severe childhood OSAHS in a high pre-test probability cohort.
Patrocinador: SEPAR (153/2015), Junta Castilla y LeÓn (VA037U16), MINECO (IJCI-2014-22664).
Idioma: eng
URI: http://uvadoc.uva.es/handle/10324/31357
Derechos: info:eu-repo/semantics/restrictedAccess
Aparece en las colecciones:GIB - Comunicaciones a congresos, conferencias, etc.

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Abstract ERS 2017.pdf136,77 kBAdobe PDFThumbnail
Visualizar/Abrir

Los ítems de UVaDOC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5
UVa-STIC