Skip navigation
Please use this identifier to cite or link to this item: http://uvadoc.uva.es/handle/10324/31390
Title: Redefining conventional biomass hydrolysis models by including mass transfer effects. Kinetic model of cellulose hydrolysis in supercritical water
Authors: Vaquerizo, Luis
Abad Fernández, Nerea
Mato, Rafael B.
Cocero Alonso, Maria José
Issue Date: 2018
Publisher: Elsevier
Description: Producción Científica
Citation: Chemical Engineering Journal 350, 2018, 463-473
Abstract: Conventional kinetic models of cellulose hydrolysis in supercritical water do not accurately represent the operation with concentrated suspensions since they neglect the mass transfer effects. This work proposes a kinetic model which is able to reproduce cellulose hydrolysis at high concentrations providing the opt imum reaction conditions to obtain nanocellulose particles and oligomers of controlled size. The basic idea of the model, which is applicable to other lignocellulosic materials, is that the hydrolysis of the cellulose particles generates an oligosaccharides layer which creates a mass transfer resistance. Therefore, it considers both the diffusion of the water molecules from the bulk phase to the surfaces of the cellulose particles and the superficial hydrolysis kinetics. Experimental points were obtained working with two different cellulose types (Dp=75 μm and Dp=50 μm) at 390 °C and 25 MPa, residence times between 50 ms and 250 ms and initial cellulose suspension concentration from 3% to 7% w/w (1% to 2.3% w/w at the inlet of the reactor). The average deviation between the experimental points and the theoretical values is lower than 10% proving the applicability of the kinetic model. The experimental and theoretical results demonstrated that increasing the total number of cellulose particles, either increasing the initial concentration or decreasing the average particle diameter, reduces the hydrolysis rate.
Classification: Mass transfer
Shrinking Core Model
particle surface
oligosaccharides layer
covering conversion
ISSN: 1385-8947
Peer Review: SI
DOI: j.cej.2018.05.077
Language: eng
URI: http://uvadoc.uva.es/handle/10324/31390
Rights: info:eu-repo/semantics/openAccess
Appears in Collections:IPP - Artículos de revista

Files in This Item:
File Description SizeFormat 
Artículo_Modelo_Celulosa.pdf555,53 kBAdobe PDFThumbnail
View/Open

This item is licensed under a Creative Commons License Creative Commons

Suggestions
University of Valladolid
Powered by MIT's. DSpace software, Version 5.5
UVa-STIC