• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31743

    Título
    Feng-Rao decoding of primary codes
    Autor
    Geil, Olav
    Matsumoto, Ryutaroh
    Ruano Benito, DiegoAutoridad UVA Orcid
    Año del Documento
    2013
    Descripción
    Producción Científica
    Documento Fuente
    Finite Fields and their Applications. Volume 23, pages 35-52 (2013)
    Abstract
    We show that the Feng-Rao bound for dual codes and a similar bound by Andersen and Geil for primary codes are consequences of each other. This implies that the Feng-Rao decoding algorithm can be applied to decode primary codes up to half their designed minimum distance. The technique applies to any linear code for which information on well-behaving pairs is available. Consequently we are able to decode efficiently a large class of codes for which no non-trivial decoding algorithm was previously known. Among those are important families of multivariate polynomial codes. Matsumoto and Miura derived from the Feng-Rao bound a bound for primary one-point algebraic geometric codes and showed how to decode up to what is guaranteed by their bound. The exposition in Matsumoto-Miura requires the use of differentials which was not needed in Andersen-Geil. Nevertheless we demonstrate a very strong connection between Matsumoto and Miura's bound and Andersen and Geil's bound when applied to primary one-point algebraic geometric codes.
    Revisión por pares
    SI
    DOI
    10.1016/j.ffa.2013.03.005
    Patrocinador
    The present work was done while Ryutaroh Matsumoto was visiting Aalborg University as a Velux Visiting Professor supported by the Villum Foundation. The authors gratefully acknowledge this support. The authors also gratefully acknowledge the support from the Danish National Research Foundation and the National Science Foundation of China (Grant No. 11061130539) for the Danish-Chinese Center for Applications of Algebraic Geometry in Coding Theory and Cryptography. Furthermore the authors are thankful for the support from Spanish grant MTM2007-64704, the Spanish MINECO grant No. MTM2012-36917-C03-03, and for the MEXT Grant-in-Aid for Scientific Research (A) No. 23246071.
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/31743
    Derechos
    openAccess
    Aparece en las colecciones
    • IMUVA - Artículos de Revista [104]
    • DEP96 - Artículos de revista [95]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    FFA2013eprint.pdf
    Tamaño:
    198.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10