Mostrar el registro sencillo del ítem

dc.contributor.authorSantos Tejido, Iván 
dc.contributor.authorAboy Cebrián, María 
dc.contributor.authorMarqués Cuesta, Luis Alberto 
dc.contributor.authorLópez Martín, Pedro 
dc.contributor.authorPelaz Montes, María Lourdes 
dc.date.accessioned2018-10-31T07:53:59Z
dc.date.available2018-10-31T07:53:59Z
dc.date.issued2018
dc.identifier.citationJournal of Non-Crystalline Solids, 2019, Volumes 503–504, Pages 20-27es
dc.identifier.issn0022-3093es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/32400
dc.descriptionProducción Científicaes
dc.description.abstractThe construction of realistic atomistic models for amorphous solids is complicated by the fact that they do not have a unique structure. Among the different computational procedures available for this purpose, the melting and rapid quenching process using molecular dynamics simulations is commonly employed as it is simple and physically based. Nevertheless, the cooling rate used during quenching strongly affects the reliability of generated samples, as fast cooling rates result in unrealistic atomistic models. In this study, we have determined the conditions to be fulfilled when simulating the quenching process with molecular dynamics for obtaining amorphous Si (a-Si) atomistic models structurally compatible with experimental samples. We have analyzed the structure of samples generated with cooling rates ranging from 3.3 1010 to 8.5 1014 K/s. The obtained results were compared with experimental data available in the literature, and with samples generated by other state-of-the-art and more sophisticated computational procedures. For cooling rates below 1011 K/s, a-Si samples generated had structural parameters within the range of experimental samples, and comparable to those obtained from other refined modeling procedures. These computationally slow cooling rates are of the same order of magnitude than those experimentally achieved with pulsed energy melting techniques. Samples obtained with faster cooling rates can be further relaxed with annealing simulations, resulting in structural parameters within the range of experimental samples. Nevertheless, the required annealing times are on the order of microseconds, which makes this annealing step non practical from a computational point of view.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationSilicio amorfoes
dc.subject.classificationSimulaciones de dinámica moleculares
dc.subject.classificationAmorphous silicones
dc.subject.classificationMolecular dynamics simulationses
dc.titleGeneration of amorphous Si structurally compatible with experimental samples through the quenching process: A systematic molecular dynamics simulation studyes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1016/j.jnoncrysol.2018.09.024es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0022309318305519es
dc.identifier.publicationtitleJournal of Non-Crystalline Solidses
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación (Proyect TEC2014-60694-P and TEC2017-86150-P)es
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA097P17 and VA119G18)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem