Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40204
Título
Topologies of continuity for Carathéodory delay differential equations with applications in non-autonomous dynamics
Año del Documento
2019
Editorial
American Institute of Mathematical Sciences
Descripción
Producción Científica
Documento Fuente
Discrete and Continuous Dynamical Systems, 2019, vol. 39, no. 9, p. 5491-5520
Resumen
We study some already introduced and some new strong and weak topologies of integral type to provide continuous dependence on continuous initial data for the solutions of non-autonomous Carathéodory delay differential equations. As a consequence, we obtain new families of continuous skew-product semiflows generated by delay differential equations whose vector fields belong to such metric topological vector spaces of Lipschitz Carathéodory functions. Sufficient conditions for the equivalence of all or some of the considered strong or weak topologies are also given. Finally, we also provide results of continuous dependence of the solutions as well as of continuity of the skew-product semiflows generated by Carathéodory delay differential equations when the considered phase space is a Sobolev space.
Palabras Clave
Carathéodory functions, non-autonomous Carathéodory differential equations, continuous dependence on initial data, linearized skew-product semiflow.
ISSN
1553-5231
Revisión por pares
SI
Patrocinador
MINECO/FEDER MTM2015-66330-P
H2020-MSCA-ITN-2014 643073 CRITICS.
H2020-MSCA-ITN-2014 643073 CRITICS.
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/643073
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem