• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/4231

    Título
    Fault Diagnosis of Hybrid Systems with Dynamic Bayesian Networks and Hybrid Possible Conficts
    Autor
    Moya Alonso, Noemí
    Director o Tutor
    Alonso González, Carlos JavierAutoridad UVA
    Pulido Junquera, José BelarminoAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela Técnica Superior de Ingeniería InformáticaAutoridad UVA
    Año del Documento
    2013
    Abstract
    Hybrid systems are very important in our society, we can find them in many engineering fields. They can develop a task by themselves or they can interact with people so they have to work in a nominal and safe state. Model-based Diagnosis (MBD) is a diagnosis branch that bases its decisions in models. This dissertation is placed in the MBD framework with Artificial Intelligence techniques, which is known as DX community. The kind of hybrid systems we focus on have a continuous behaviour commanded by discrete events. There are several works already done in the diagnosis of hybrid systems field. Most of them need to pre-enumerate all the possible modes in the system even if they are never visited during the process. To solve that problem, some authors have presented the Hybrid Bond Graph (HBG) modeling technique, that is an extension of Bond Graphs. HBGs do not need to enumerate all the system modes, they are built as the system visits them at run time. Regarding the faults that can appear in a hybrid system, they can be divided in two main groups: (1) Discrete faults, and (2) parametric or continuous faults. The discrete faults are related to the hybrid nature of the systems while the parametric or continuous faults appear as faults in the system parameters or in the sensors. Both types af faults have not been considered in a unified diagnosis architecture for hybrid systems. The diagnosis process can be divided in three main stages: Fault Detection, Fault Isolation and Fault Identification. Computing the set of Possible Conflicts (PCs) is a compilation technique used in MBD of continuous systems. They provide a decomposition of a system in subsystems with minimal analytical redundancy that makes the isolation process more efficient. They can be used for fault detection and isolation tasks by means of the Fault Signature Matrix (FSM). The FSM is a matrix that relates the different parameters (fault candidates) in a system and the PCs where they are used.
    Materias (normalizadas)
    Modelos matemáticos
    Programación de ordenadores
    Redes de ordenadores
    Inteligencia artificial
    DOI
    10.35376/10324/4231
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/4231
    Derechos
    openAccess
    Aparece en las colecciones
    • Tesis doctorales UVa [2414]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    TESIS441-140204.pdf
    Tamaño:
    4.199Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10