Mostrar el registro sencillo del ítem

dc.contributor.authorSantos Tejido, Iván 
dc.contributor.authorCaballo Zulueta, Ana
dc.contributor.authorAboy Cebrián, María 
dc.contributor.authorMarqués Cuesta, Luis Alberto 
dc.contributor.authorLópez Martín, Pedro 
dc.contributor.authorPelaz Montes, María Lourdes 
dc.date.accessioned2021-12-22T12:01:59Z
dc.date.available2021-12-22T12:01:59Z
dc.date.issued2022
dc.identifier.citationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2022, vol. 512, p. 54-59es
dc.identifier.issn0168-583Xes
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/51137
dc.descriptionProducción Científicaes
dc.description.abstractEmergent alternative Si processes and devices have promoted applications outside the usual processing temperature window and the failure of traditional defect kinetics models. These models are based on Ostwald ripening mechanisms, assume pre-established defect configurations and neglect entropic contributions. We performed molecular dynamics simulations of self-interstitial clustering in Si with no assumptions on preferential defect configurations. Relevant identified defects were characterized by their formation enthalpy and vibrational entropy calculated from their local vibrational modes. Our calculations show that entropic terms are key to understand defect kinetics at high temperature. We also show that for each cluster size, defect configurations may appear in different crystallographic orientations and transformations among these configurations are often hampered by energy barriers. This induces the presence of non-expected small-size defect cluster configurations that could be associated to optical signals in low temperature processes. At high temperatures, defect dynamics entails mobility and ripening through a coalescence mechanism.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationSilicon processinges
dc.subject.classificationSi self-interstitial clusterses
dc.subject.classificationAtomistic simulationses
dc.subject.classificationOstwald ripeninges
dc.titleExtending defect models for Si processing: The role of energy barriers for defect transformation, entropy and coalescence mechanismes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The Authorses
dc.identifier.doi10.1016/j.nimb.2021.12.002es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0168583X21004122es
dc.identifier.publicationfirstpage54es
dc.identifier.publicationlastpage59es
dc.identifier.publicationtitleNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atomses
dc.identifier.publicationvolume512es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación (project PID2020-115118GB-I00)es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco22 Físicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem