dc.contributor.author | García Escudero, Luis Ángel | |
dc.contributor.author | Gordaliza Ramos, Alfonso | |
dc.contributor.author | Greselin, Francesca | |
dc.contributor.author | Salvatore, Ingrassia | |
dc.contributor.author | Mayo Iscar, Agustín | |
dc.date.accessioned | 2015-05-26T17:00:04Z | |
dc.date.available | 2015-05-26T17:00:04Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Arxiv, Marzo 2015, vol. 1. p.1-30 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/11618 | |
dc.description | Producción Científica | es |
dc.description.abstract | Mixtures of Gaussian factors are powerful tools for modeling an unobserved
heterogeneous population, offering - at the same time - dimension reduction
and model-based clustering. Unfortunately, the high prevalence of spurious
solutions and the disturbing effects of outlying observations, along maximum likelihood
estimation, open serious issues. In this paper we consider restrictions for
the component covariances, to avoid spurious solutions, and trimming, to provide
robustness against violations of normality assumptions of the underlying latent factors.
A detailed AECM algorithm for this new approach is presented. Simulation
results and an application to the AIS dataset show the aim and effectiveness of the
proposed methodology. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Universidad de Valladolid. Facultad de Medicina | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Análisis multivariante | es |
dc.title | Robust estimation for mixtures of Gaussian factor analyzers, based on trimming and constraints | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.publicationfirstpage | 1 | es |
dc.identifier.publicationissue | 12 | es |
dc.identifier.publicationlastpage | 30 | es |
dc.identifier.publicationtitle | Arxiv | es |
dc.peerreviewed | SI | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |