Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorGordaliza Ramos, Alfonso 
dc.contributor.authorGreselin, Francesca
dc.contributor.authorSalvatore, Ingrassia
dc.contributor.authorMayo Iscar, Agustín 
dc.date.accessioned2015-05-26T17:00:04Z
dc.date.available2015-05-26T17:00:04Z
dc.date.issued2015
dc.identifier.citationArxiv, Marzo 2015, vol. 1. p.1-30es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/11618
dc.descriptionProducción Científicaes
dc.description.abstractMixtures of Gaussian factors are powerful tools for modeling an unobserved heterogeneous population, offering - at the same time - dimension reduction and model-based clustering. Unfortunately, the high prevalence of spurious solutions and the disturbing effects of outlying observations, along maximum likelihood estimation, open serious issues. In this paper we consider restrictions for the component covariances, to avoid spurious solutions, and trimming, to provide robustness against violations of normality assumptions of the underlying latent factors. A detailed AECM algorithm for this new approach is presented. Simulation results and an application to the AIS dataset show the aim and effectiveness of the proposed methodology.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherUniversidad de Valladolid. Facultad de Medicinaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAnálisis multivariantees
dc.titleRobust estimation for mixtures of Gaussian factor analyzers, based on trimming and constraintses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.publicationfirstpage1es
dc.identifier.publicationissue12es
dc.identifier.publicationlastpage30es
dc.identifier.publicationtitleArxives
dc.peerreviewedSIes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem