Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/11618
Título
Robust estimation for mixtures of Gaussian factor analyzers, based on trimming and constraints
Autor
Año del Documento
2015
Editorial
Universidad de Valladolid. Facultad de Medicina
Descripción
Producción Científica
Documento Fuente
Arxiv, Marzo 2015, vol. 1. p.1-30
Resumen
Mixtures of Gaussian factors are powerful tools for modeling an unobserved
heterogeneous population, offering - at the same time - dimension reduction
and model-based clustering. Unfortunately, the high prevalence of spurious
solutions and the disturbing effects of outlying observations, along maximum likelihood
estimation, open serious issues. In this paper we consider restrictions for
the component covariances, to avoid spurious solutions, and trimming, to provide
robustness against violations of normality assumptions of the underlying latent factors.
A detailed AECM algorithm for this new approach is presented. Simulation
results and an application to the AIS dataset show the aim and effectiveness of the
proposed methodology.
Materias (normalizadas)
Análisis multivariante
Revisión por pares
SI
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International