• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • TRABALHO DE CONCLUSÃO DE ESTUDO
    • Trabajos Fin de Máster UVa
    • Ver item
    •   Página inicial
    • TRABALHO DE CONCLUSÃO DE ESTUDO
    • Trabajos Fin de Máster UVa
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/15236

    Título
    Scalable RDF compression with MapReduce and HDT
    Autor
    Giménez García, José Miguel
    Director o Tutor
    Fuente Redondo, Pablo Lucio de laAutoridad UVA
    Martínez Prieto, Miguel AngelAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de TelecomunicaciónAutoridad UVA
    Año del Documento
    2015
    Titulación
    Máster en Investigación en Tecnologías de la Información y las Comunicaciones
    Resumo
    El uso de RDF para publicar datos semánticos se ha incrementado de forma notable en los últimos años. Hoy los datasets son tan grandes y están tan interconectados que su procesamiento presenta problemas de escalabilidad. HDT es una representación compacta de RDF que pretende minimizar el consumo de espacio a la vez que proporciona capacidades de consulta. No obstante, la generación de HDT a partir de formatos en texto de RDF es una tarea costosa en tiempo y recursos. Este trabajo estudia el uso de MapReduce, un framework para el procesamiento distribuido de grandes cantidades de datos, para la tarea de creación de estructuras HDT a partir de RDF, y analiza las mejoras obtenidas tanto en recursos como en tiempo frente a la creación de dichas estructuras en un proceso mono-nodo.
    Materias (normalizadas)
    Metadatos
    Web semántica
    RDF (Lenguaje de marcas)
    Departamento
    Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/15236
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Máster UVa [7002]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    TFM-G529.pdf
    Tamaño:
    2.849Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10