Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21571
Título
Consensus-Based Agglomerative Hierarchical Clustering
Año del Documento
2017
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Fuzzy Sets, Rough Sets, Multisets and Clustering. eds. V. Torra, A. Dahlbom, Y. Narukawa. Springer, 2017 (Studies in Computational Intelligence 671)
Abstract
In this contribution, we consider that a set of agents assess a set of alternatives
through numbers in the unit interval. In this setting, we introduce a measure
that assigns a degree of consensus to each subset of agents with respect to every
subset of alternatives. This consensus measure is defined as 1 minus the outcome
generated by a symmetric aggregation function to the distances between
the corresponding individual assessments. We establish some properties of the
consensus measure, some of them depending on the used aggregation function.
We also introduce an agglomerative hierarchical clustering procedure that is generated
by similarity functions based on the previous consensus measures
Materias (normalizadas)
Matemáticas
Operadores, Teoría de
ISBN
978-3-319-47557-8
Patrocinador
Ministerio de Economía, Industria y Competitividad (ECO2012-32178)
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA066U13)
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA066U13)
Version del Editor
Propietario de los Derechos
© 2017 Springer
Idioma
eng
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International