Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21599
Título
Production of stabilized quercetin aqueous suspensions bysupercritical fluid extraction of emulsions
Autor
Año del Documento
2015
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
The Journal of Supercritical Fluids, 2015, vol. 100, p. 34–45
Resumo
Quercetin is a flavonoid with highly promising bioactivity against a variety of diseases, due to its strong antioxidant, antiviral and antihistaminic effect, but these applications are limited by the low solubility of quercetin in gastrointestinal fluids and the correspondingly low bioavailability. The objective of this work is to produce encapsulated quercetin particles in sub-micrometric scale, in order to increase their low bioavailability. These particles were produced by extraction of organic solvent from oil in water emulsions by Supercritical Fluid Extraction of Emulsions (SFEE). Due to the rapid extraction of organic solvent by this method, the disperse organic phase becomes rapidly supersaturated, causing the precipitation of quercetin particles in sub-micrometric scale, encapsulated by the surfactant material. Two different biopolymers (Pluronic L64 ® poloxamers and soy bean lecithin) were used as carriers and surfactant materials. In experiments with Pluronic, needle quercetin particles were obtained after SFEE treatment, with particle sizes around 1 μm and poor encapsulation efficiency. In case of soy lecithin, quercetin-loaded multivesicular liposomes were obtained, with a mean particle size around 100 nm and around 70% encapsulation efficiency of quercetin, without presence of segregated quercetin crystals
Materias (normalizadas)
Encapsulación
ISSN
0896-8446
Revisión por pares
SI
Patrocinador
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA225U14)
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International