• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22870

    Título
    The anisotropic oscillator on curved spaces: A new exactly solvable model
    Autor
    Ballesteros Castañeda, ÁngelAutoridad UVA
    Herranz, F.J.
    Kuru, Sengul
    Negro Vadillo, Francisco JavierAutoridad UVA Orcid
    Año del Documento
    2016
    Documento Fuente
    Ann. Phys. 373 (2016) 399-423.
    Resumen
    We present a new exactly solvable (classical and quantum) model that can be interpreted as the generalization to the two-dimensional sphere and to the hyperbolic space of the two-dimensional anisotropic oscillator with any pair of frequencies and . The new curved Hamiltonian depends on the curvature of the underlying space as a deformation/contraction parameter, and the Liouville integrability of relies on its separability in terms of geodesic parallel coordinates, which generalize the Cartesian coordinates of the plane. Moreover, the system is shown to be superintegrable for commensurate frequencies , thus mimicking the behaviour of the flat Euclidean case, which is always recovered in the limit. The additional constant of motion in the commensurate case is, as expected, of higher-order in the momenta and can be explicitly deduced by performing the classical factorization of the Hamiltonian. The known and anisotropic curved oscillators are recovered as particular cases of , meanwhile all the remaining curved oscillators define new superintegrable systems. Furthermore, the quantum Hamiltonian is fully constructed and studied by following a quantum factorization approach. In the case of commensurate frequencies, the Hamiltonian turns out to be quantum superintegrable and leads to a new exactly solvable quantum model. Its corresponding spectrum, that exhibits a maximal degeneracy, is explicitly given as an analytical deformation of the Euclidean eigenvalues in terms of both the curvature and the Planck constant . In fact, such spectrum is obtained as a composition of two one-dimensional (either trigonometric or hyperbolic) Pösch–Teller set of eigenvalues.
    Departamento
    Física Teórica, Atómica y Óptica
    DOI
    10.1016/j.aop.2016.07.006
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (Projects MTM2013-43820-P and MTM2014-57129-C2-1-P)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. BU278U14 and VA057U16)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0003491616301075
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/22870
    Derechos
    openAccess
    Aparece en las colecciones
    • FM - Artículos de revista [134]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    16_AP_anisotropic.pdf
    Tamaño:
    755.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10