• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22871

    Título
    A new look at the Feynman ‘hodograph’ approach to the Kepler first law
    Autor
    Cariñena Marzo, José Fernando
    Fernández-Rañada Menéndez De Luarca, Manuel
    Santander Navarro, MarianoAutoridad UVA
    Año del Documento
    2016
    Editorial
    IOP Publishing
    Descripción
    Producción Científica
    Documento Fuente
    European Journal of Physics, 2016, vol. 37, n. 2. 19 p.
    Abstract
    Hodographs for the Kepler problem are circles. This fact, known for almost two centuries, still provides the simplest path to derive the Kepler first law. Through Feynman's 'lost lecture', this derivation has now reached a wider audience. Here we look again at Feynman's approach to this problem, as well as the recently suggested modification by van Haandel and Heckman (vHH), with two aims in mind, both of which extend the scope of the approach. First we review the geometric constructions of the Feynman and vHH approaches (that prove the existence of elliptic orbits without making use of integral calculus or differential equations) and then extend the geometric approach to also cover the hyperbolic orbits (corresponding to $E\gt 0$). In the second part we analyse the properties of the director circles of the conics, which are used to simplify the approach, and we relate with the properties of the hodographs and Laplace–Runge–Lenz vector the constant of motion specific to the Kepler problem. Finally, we briefly discuss the generalisation of the geometric method to the Kepler problem in configuration spaces of constant curvature, i.e. in the sphere and the hyperbolic plane.
    Departamento
    Física Teórica, Atómica y Óptica
    ISSN
    1361-6404
    DOI
    10.1088/0143-0807/37/2/025004
    Patrocinador
    Ministerio de Educación, Cultura y Deporte (project MTM-2012–33575)
    Gobierno de Aragón (project DGA E24/1)
    Ministerio de Economía, Industria y Competitividad (project MTM2014–57129)
    Version del Editor
    https://iopscience.iop.org/article/10.1088/0143-0807/37/2/025004
    Propietario de los Derechos
    © 2016 IOP Publishing
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/22871
    Tipo de versión
    info:eu-repo/semantics/publishedversion
    Derechos
    openAccess
    Aparece en las colecciones
    • FM - Artículos de revista [134]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    CarinnenaRannadaSantander_EurJPhys2016.pdf
    Tamaño:
    973.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10