Mostrar el registro sencillo del ítem

dc.contributor.authorAlonso Mallo, Isaías 
dc.contributor.authorCano Urdiales, Begoña 
dc.contributor.authorReguera, Nuria
dc.date.accessioned2017-07-12T10:40:27Z
dc.date.available2017-07-12T10:40:27Z
dc.date.issued2017
dc.identifier.citationIMA J. Numer. Anal. d.o.i: 10.1093/imanum/drw052es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/24372
dc.description.abstractExponential Lawson methods are well known to have a severe order reduction when integrating stiff problems. In a previous article, the precise order observed with Lawson methods when integrating linear problems is justified in terms of different conditions of annihilation on the boundary. In fact, the analysis of convergence with all exponential methods when applied to parabolic problems has always been performed under assumptions of vanishing boundary conditions for the solution. In this article, we offer a generalization of Lawson methods to approximate problems with nonvanishing and even time-dependent boundary values. This technique is cheap and allows to avoid completely order reduction independently of having vanishing or nonvanishing boundary conditions.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherOxford Academices
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleAvoiding order reduction when integrating linear initial boundary value problems with Lawson methodses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderInstitute of Mathematics and its Applicationses
dc.identifier.doi10.1093/imanum/drw052es
dc.relation.publisherversionhttps://academic.oup.com/imajnaes
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación: MTM 2015-66837-Pes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem